期刊文献+

基于结构低秩编码的复杂环境红外弱小目标检测算法 被引量:8

Infrared dim small target detection algorithm based on structural low-rank coding under complex environment
下载PDF
导出
摘要 针对复杂环境红外弱小目标检测难的问题,依据背景慢变特性,提出了一种将背景优化和低秩表达相结合的结构低秩编码小目标检测算法。首先,利用梯度0l范数约束提取背景中梯度较大的成分,保留灰度快变结构,同时平滑慢变结构,对背景进行优化;其次,使用核函数刻画背景图像块之间的低秩特性,用秩描述背景的主要结构并进行建模;最后,分解得到的误差矩阵具有稀疏性,主要包含快变的小目标结构,通过稀疏矩阵1,2l范数定位红外弱小目标。实验结果表明,结构低秩编码检测算法能够有效发掘复杂背景图像块之间的关系,抑制杂波干扰,在虚警为2时,最低检测率为92%。提高了复杂环境下红外弱小目标的检测性能,基本能满足实际应用要求。 Aiming at the problem of dim small target detection under complex environment,a small-target detection algorithm with structural low-rank coding(SLRC) is put forward based on background's slow varying,which combines background optimization with low-rank representation. Firstly,the background components with larger gradient are extracted using 0l norm restrict of gradient. The grayscale rapid-varying structure is retained,and the slow-varying structure is smoothed. The background is optimized by this way. Secondly,the low-rank between pieces of background is modeled by the nuclear norm. And the model is built based on the background's main structure,which is described by rank. At last,the error matrix by decomposition is sparse,which contains small-target rapid-varying structure. The infrared dim small target is located by 1,2l norm of error matrix. Experiment results show that the SLRC detection algorithm can effectively explore the relationships between complex backgrounds and depress the jam of clutter. The minimum detection rate can be up to 92% when false-alarm is 2. These improve the detection performance of infrared dim small target under complex environment,basically satisfying the actual application requirements.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2015年第5期662-669,共8页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61203189 61374054)
关键词 复杂环境 红外小目标 低秩表达 0l范数约束 complex environment small infrared target low-rank representation 0l norm constraint
  • 相关文献

参考文献12

  • 1闫钧华,陈少华,许俊峰,储林臻.基于可见光与红外图像特征融合的目标跟踪[J].中国惯性技术学报,2013,21(4):517-523. 被引量:7
  • 2Zheng Cheng-yong, Li Hong. Small infrared target detection based on harmonic and sparse matrix decompo- sition[J]. Optical Engineering, 2013, 52(6): 066401- 066401.
  • 3Gao Chen-qiang, Zhang Tian-qi, Li Qiang. Small infrared target detection using sparse ring representation[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(3) 21-30.
  • 4Tom V T, Peli T, Leung M, et al. Morphology-based algorithm for point target detection in infrared back- grounds[C]//Optical Engineering and Photonics in Aero- space Sensing. International Society for Optics and Photonics, 1993: 2-11.
  • 5Deshpande S D, Meng H E, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. 1999: 74-83.
  • 6Han Jin-hui, Ma Yong, Zhou Bo, et al. A robust infrared small target detection algorithm based on human visual system[J]. Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172.
  • 7Qi Sheng-xiang, Ma Jie, Tao Chao, et al. A robust directional saliency-based method for infrared small- target detection under various complex back-grounds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 495-499.
  • 8Yang Chun-wei, Liu Hua-ping, Liao Shou-yi, et al. Small target detection in infrared video sequence using robust dictionary learning[J]. Infrared Physics & Technology, 2015, 68: 1-9.
  • 9Zheng Cheng-yong, Li Hong. Small infrared target detec- tion based on low-rank and sparse matrix decompo- sition[J]. Applied Mechanics and Materials, 2013, 239: 214-218.
  • 10He Yu-jie, Li Min, Zhang Jin-li, et al. Small infrared target detection based on low-rank and sparse representa- tion[J]. Infrared Physics & Technology, 2015, 68: 98-109.

二级参考文献10

共引文献6

同被引文献34

  • 1Han Jin-hui,Ma Yong,Zhou Bo,et al.A robust infrared small target detection algorithm based on human visual system[J].IEEE Geoscience and Remote Sensing Letters,2014,11(12):2168-2172.
  • 2Qi Sheng-xiang,Ma Jie,Tao Chao,et al.A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):495-499.
  • 3He Yu-jie,Li Min,Zhang Jin-li,et al.Small infrared target detection based on low-rank and sparse representation[J].Infrared Physics&Technology,2015,68:98-109.
  • 4Yang Chun-wei,Liu Hua-ping,Liao Shou-yi,et al.Small target detection in infrared video sequence using robust dictionary learning[J].Infrared Physics&Technology,2015,68:1-9.
  • 5Zheng Cheng-yong,Li Hong.Small infrared target detection based on low-rank and sparse matrix decomposition[J].Applied Mechanics and Materials,2013,239-240:214-218.
  • 6Huang Guang-bin,Zhu Qin-yu,Chee-Kheong Siew.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1):489-501.
  • 7Tom V T,Peli T,Leung M,et al.Morphology-based algorithm for point target detection in infrared backgrounds[C]//Optical Engineering and Photonics in Aerospace Sensing.1993:2-11.
  • 8Deshpande S D,Meng H E,Venkateswarlu R,et al.Max-mean and max-median filters for detection of small targets[C]//SPIE's International Symposium on Optical Science,Engineering,and Instrumentation.1999:74-83.
  • 9曹原,杨杰,刘瑞明.基于邻域分析TDLMS滤波器的红外小目标检测[J].红外与毫米波学报,2009,28(3):235-240. 被引量:14
  • 10吴一全,尹丹艳,纪守新.基于双树复数小波和SVR的红外小目标检测[J].仪器仪表学报,2010,31(8):1834-1839. 被引量:15

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部