期刊文献+

基于经验模态概率分布的光纤陀螺信号处理 被引量:8

Fiber optic gyro signal processing based on empirical mode probability distribution
下载PDF
导出
摘要 为了抑制光纤陀螺随机漂移,基于改进的经验模态分解(EMD)和新型模态筛选标准提出了一种自适应的区间阈值滤波方法。首先分析加入高斯噪声对 EMD 分解结果的影响,提出有界噪声辅助以改善 EMD 分解质量,然后针对本征模态函数的概率分布特征提出了基于样本熵的模态筛选标准,最后采用数据驱动的阈值选择方法实现自适应的区间阈值滤波。为了验证算法的有效性,采集一款干涉型光纤陀螺静态漂移信号进行实验分析,结果表明本文方法较基于平稳小波变换和 EMD 的阈值滤波有更好的去噪效果。仿真分析表明该去噪算法减小了捷联惯性导航系统的航向角误差,均方根误差较平稳小波变换去噪算法改善了约 78.6%。 Based on an improved empirical mode decomposition(EMD) and a newly proposed mode selection criterion,an adaptive interval threshold filtering method is developed to mitigate the random drift of fiber optic gyroscope. First,the effect of adding Gaussian noise to assist EMD decomposition is analyzed,and a bounded assist is developed to improve decomposition quality. Then,aiming at the probability distribution feature of intrinsic mode function,a novel mode selection criterion is proposed. Finally,an adaptive interval threshold filter is developed based on data-driven threshold selection. The experiment analysis,which employs static data detected from an interferometric FOG,is performed to verify the proposed algorithm,and the results show that,compared with threshold filtering methods based on stationary wavelet transform(SWT) and EMD,the proposed method significantly improves the denoising result. In addition,the simulation results show that,compared with SWT-based method,the proposed method improves the heading accuracy of strapdown inertial navigation system by 78.6% in term of mean square error.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2015年第5期690-695,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(51375087 50975049) 江苏省普通高校研究生科研创新计划资助项目(KYLX_0106)
关键词 光纤陀螺 经验模态分解 概率密度函数 样本熵 fiber optic gyroscope empirical mode decomposition probability density function sample entropy
  • 相关文献

参考文献17

二级参考文献43

  • 1何星,王宏力,陆敬辉,姜伟.一种用于陀螺随机漂移预测的多尺度混合建模方法[J].中国惯性技术学报,2014,12(2):271-275. 被引量:2
  • 2李兵兵,常义林,胡征.小波基的构造方法和算法设计[J].电子科学学刊,1994,16(6):646-650. 被引量:2
  • 3姚檀栋,焦克勤,李忠勤,施维林,李月芳,刘景寿,皇翠兰,谢超,L.G.Thompson,E.M. Thompson.古里雅冰帽气候环境记录[J].中国科学(B辑),1994,24(7):766-773. 被引量:24
  • 4Wu Z H,Huang N E. Ensemble empirical mode decomposition:a noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,(01):1-41.
  • 5Kopsinis Y,McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J].IEEE Transactions on Signal Processing,2009,(04):1351-1362.doi:10.1109/TSP.2009.2013885.
  • 6SHUPE D M.Thermally induced nonreciprocity in the fi-ber-optic interferometer[J].Applied Optics,1980,19(5):654-655.
  • 7SONG R,CHEN X Y,SHEN CH,et al.Modeling FOGdrift using back-propagation neural network optimized byartificial fish swarm algorithm[J].Journal of Sensors,DOI:10.1155/2014/273043,2014.
  • 8HUANG G B,ZHU Q Y,SIEW C K.Extreme learningmachine:Theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
  • 9HUANG G B,ZHOU H M,DING X J,et al.Extremelearning machine for regression and multiclass classifica-tion[J].IEEE Trans,on System,Man and Cybemetics-Part B:Cybernetics,2012,42(2):513-529.
  • 10HUANG N E,SHEN ZH,LONG S R,et al.The empiri-cal mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998,454(1971):903-995.

共引文献137

同被引文献41

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部