期刊文献+

石墨烯光阴极带隙设计

Band gap design of graphene photocathode
下载PDF
导出
摘要 为了使石墨烯光阴极实现光电转化功能,以超晶格形式掺杂六角氮化硼到石墨烯中,形成杂化纳米带。通过基于第一性原理的计算,从能带结构可以看出,这种方法可以在一个很大的范围内(0~2.5 e V)调控带隙大小。结合能带结构和电荷密度分布分析了带隙调控的机理,此外,运用K-P模型理论分析也得到了一致的结果。以这种方式调控石墨烯材料的带隙,锯齿型边缘和扶手椅型边缘的六角氮化硼/石墨烯(h-BN/graphene)超晶格纳米带,其带隙大小均随着其中h-BN所占比例的增加而变大,而且其带隙大小几乎不受纳米带宽度的影响,这样一来材料的尺寸可以做到更加微型化。再者,基于此方法可以制成渐变带隙结构,进而实现同一光阴极对不同范围光谱的响应。 In order to achieve graphene photocathode photoelectric conversion function, hexagonal boron nitride was doped in graphene in the form of hybrid superlattices nanoribbons. As can be seen from the band structure which was obtained by applying first-principles methods, the band gap of the superlattices was effectively regulated in a wide range (0-2.5 eV) by this means. The mechanism of band gap regulation was analyzed by the energy band structure and the charge density distribution. Furthermore, the present results were coincidence with the conclusion of Kronig-Penney model. With the increase of the h-BN proportion, the band gap engineering of graphene materials in this way, the band gap increases both zigzag edges superlattices nanoribbons and armchair edges superlattices nanoribbons. Besides, the band gap is almost independent of the width of nanoribbons, thus the size of the material can be more miniaturized. Moreover, the graphene photocathode with the gradient band gap characteristic can be made based on this approach, it can respond to different spectral ranges.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第11期3191-3196,共6页 Infrared and Laser Engineering
基金 北方夜视科技集团工艺科研项目(GY201407)
关键词 石墨烯 光阴极 带隙 六角氮化硼 graphene photocathode band gap hexagonal boron nitride
  • 相关文献

参考文献16

  • 1Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
  • 2谢世伟,肖啸,谭建军,刘愈,张志友,杜惊雷,高福华.基于石墨烯基电极染料敏化太阳能电池的研究进展[J].中国光学,2014,7(1):47-56. 被引量:15
  • 3Gerasimos Konstantatos, Michela Badioli, Louis Gaudreau, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanoteeh, 2012, 7: 363-368.
  • 4刘林生,刘肃,王文新,赵宏鸣,刘宝利,蒋中伟,高汉超,王佳,黄庆安,陈弘,周均铭.GaAs(110)量子阱材料生长和光学特性[J].光学精密工程,2007,15(5):678-683. 被引量:2
  • 5张连东,冯刘,刘晖,等.均匀掺杂GaAs光阴极表面势垒特性研究[J].红外与激光工程,2013,42(8):2181-2185.
  • 6乔建良,常本康,钱芸生,杜晓晴,张益军,高频,王晓晖,郭向阳,牛军,高有堂.负电子亲和势GaN光电阴极光谱响应特性研究[J].物理学报,2010,59(5):3577-3582. 被引量:4
  • 7Martins T B, Miwa R H, da Silva A J R, et al. Electronic and transport properties of boron-doped graphene nanoribbons [J]. Physical Review Letters, 2007, 98(19): 196803.
  • 8Yu S S, Zheng W T, Wen Q B, et al. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges [J]. Carbon, 2008, 46(3): 537-543.
  • 9Wehling T O, Novoselov K S, Morozov S V, et al. Molecular doping of graphene[J]. Nano Letters, 2007, 8(1): 173-177.
  • 10Ci L, Song L, Jin C, et al. Atomic layers of hybridized boron nitride and graphene domains [J]. Nat Mater, 2010, 9(5): 430-435.

二级参考文献48

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部