期刊文献+

面向星载激光测高仪的陆地目标响应函数仿真 被引量:12

Simulation of terrestrial target response function for satellite laser altimeter
下载PDF
导出
摘要 面向星载激光测高仪的陆地目标响应函数的时间分布是评价星载激光测高仪使用性能的重要因素。根据星载激光测高仪发射的高斯激光束和目标响应函数的分布特点,采用等间隔同心圆环与等分圆周的方法实现目标的离散化三角网格划分,基于三角网格的均匀性与目标响应函数特征参数的误差模型,以目标响应函数的仿真误差指标为依据,提出一种全新的目标响应函数的时空域参数选取方法。以对地观测星载激光测高仪GLAS的系统参数为输入条件,针对三种典型倾斜度(3°、12.5°和28.5°)的平面目标和多平面目标,通过限定目标响应函数特征参数的2%容限误差,仿真了对应的波形分布,并解算出其特征参数的最大误差不超过1.16%,有效验证了陆地目标响应函数仿真方法的正确性。所得结果对于星载激光测高仪接收脉冲回波的分析、数据反演及其性能评价具有一定的实际应用价值。 The Terrestrial Target Response Function(TTRF) of satellite laser altimeter is the key factor for evaluating its performance. According to the distribution characteristics of transmitted Gaussian laser beam and the target response function, the methods of using equal-interval concentric rings and dividing circumference uniformly were utilized to achieve the discrete triangular mesh of target. Based on the homogeneity of the triangular mesh and error model about characteristic parameters of TTRF, a new parameter selection method of TTRF was presented in terms of the simulation error index. In light of geosciences laser altimeter system (GLAS) parameters, the TTRF waveform distribution of planar targetwith three typical slope targets (3° and 12.5° and 12.5°) and multiple planar targets were simulated, by restricting the allowance error of its characteristic parameters within 2%. The calculated error is less than 1.16%, which proved that the method on simulation of TFRF is correct. The results have some application values for the simulation on received signal waveform of laser altimeter, data inversion and the performance evaluation.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第11期3424-3430,共7页 Infrared and Laser Engineering
基金 基础测绘科技计划 测绘地理信息公益性行业专项(201412007 201512016) 上海航天科技创新基金(SAST201422)
关键词 星载激光测高仪 目标响应函数 仿真 网格分割 参数选择 satellite laser altimeter target response function simulation discrete triangular mesh parameter selection
  • 相关文献

参考文献13

  • 1ishire J B, Sun X, Rids H, et al. Geoscience laser altimeter stem (GLAS) on the ICESat mission: on-orbit easurement performance [J]. Geophysical Research Letters,2005, 32(S2): S1-S4.
  • 2胡以华,舒嵘.机载与星载激光探测技术及其应用[J].红外与激光工程,2008,37(S3):8-13. 被引量:9
  • 3Mahoney C, Kljun N, Los S O, et al. Slope estimation from ICESat/GLAS[J]. Remote Sensing, 2014, 6(10): 10051-10069.
  • 4周辉,李松.激光测高仪接收信号波形模拟器[J].中国激光,2006,33(10):1402-1406. 被引量:15
  • 5Brenner A C, Zwally H J, Bentley C R, et al. The algorithm theoretical basis document for the derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights [R]. NASA Goddard Space Flight Center, 2012.
  • 6朱近,孙世君.星载激光测高仪回波信号仿真分析[J].航天返回与遥感,2013,34(1):67-78. 被引量:8
  • 7Filin S, Csatho B. An efficient algorithm for the synthesis of laser altimetry waveforms[R]. BPRC Technical Report, 2000.
  • 8Huang H, Wynne R H. Simulation of lidar waveforms with a time-dependent radiosity algorithm [J]. Canadian Journal of Remote Sensing, 2013, 39(S1): S126-S138.
  • 9Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint fullwaveform digitizing airborne laser scanner [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100- 112.
  • 10李松,周辉,石岩,郭耀.激光测高仪的回波信号理论模型[J].光学精密工程,2007,15(1):33-39. 被引量:23

二级参考文献32

共引文献45

同被引文献114

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部