期刊文献+

卡尔曼粒子滤波中基于精确运动模型的局部区域估计(英文) 被引量:4

Accurate local region prediction by precise motion model in Kalman-particle filter
下载PDF
导出
摘要 粒子滤波广泛应用于对精度和稳定性要求较高的目标跟踪,但其计算量大,并且计算复杂度随着状态量和粒子数目增长迅速增加。将目标跟踪转化为由粗到精的搜索过程,提出了一种基于精确运动模型的改进分层卡尔曼粒子滤波算法。该方法利用加速度的运动模型在真实目标位置的周围估计目标的散布范围,并在该范围内随机生成粒子,寻找精确的目标位置。文中引入加加速度模型主要是由于现有方法的状态量阶数不足,导致模型精确度较低,无法应对大机动目标的跟踪。因此,引入了高阶状态变量加加速度,并将其用于改进分层卡尔曼粒子滤波的运动模型。利用分层卡尔曼粒子滤波、粒子滤波以及提出的方法进行了跟踪试验,结果表明,基于精确运动模型的改进分层卡尔曼粒子滤波模型的跟踪方法能够提高线性运动的预测精度,实现复杂环境下精确稳定的跟踪。 Particle filter is widely used for visual tracking with superior performance in terms of accuracy and robustness, but it suffers from the heavy computational load, and the calculation complexity increases quickly with the state dimension and the number of particles. In this paper, the tracking problem was considered as a coarse-to-fine process to find the optimal state, thus, a hierarchical Kalman-particle filter (HKPF) with precise motion model, called improved hierarchical Kalman-particle filter (IHKPF), was proposed, in which Kalman filter with Jerk model was used to predict a local region around the estimation of global linear motion, and then particles were generated in the local region. The reason for introducing Jerk model was that the inadequate tracking performance of current models with the higher order derivating in the case of very highly maneuvering targets were not tracked therefore, Jerk was added. The high order state variable Jerk was applied in motion model of IHKPF. The HKPF, PF and proposed in the paper were used to compelete track experiment. The experimental results among the proposed algorithm HKPF and PF indicate that Jerk model provides higher accuracy prediction, resulting in well- behaved tracking in complex environment.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第11期3475-3482,共8页 Infrared and Laser Engineering
基金 军内科研项目 军械工程学院科研基金(YJJM11018)
关键词 改进分层卡尔曼粒子滤波 由粗到精搜索策略 区域估计 JERK模型 improved hierarchical Kalman-particle filter coarse-to-fine region estimation Jerk model
  • 相关文献

参考文献11

  • 1Martinez A, Jimenez J J. Tracking by means of geodesic region models applied to multidimensional and complex medical images [J]. Computer Vision and Image Understanding, 2011, 115: 1083-1098.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Trans Pattern Anal Mach InteU, 2003, 25(5): 564-577.
  • 3Avidan S. Ensemble tracking [J]. IEEE Trans Pattern Anal Mach InteU, 2007, 29(2): 261-271.
  • 4田立,周付根,孟偲.基于嵌入式多核DSP系统的并行粒子滤波目标跟踪(英文)[J].红外与激光工程,2014,43(7):2354-2361. 被引量:4
  • 5曹阳,赵明富,罗彬彬,全晓莉,郭靖,李鑫.机载空间光通信平台的交互多模型粒子滤波跟踪算法[J].红外与激光工程,2012,41(11):3065-3068. 被引量:10
  • 6李权,赵勋杰,彭青艳,邹薇,张雪松.基于主成分分析法的窗口自适应粒子滤波算法[J].红外与激光工程,2014,43(10):3474-3479. 被引量:5
  • 7Yilmaz A, Javed O, Shah M. Object tracking: A survey [J]. ACM Comput Surv, 2006, 38(4): 1-45.
  • 8Wang H, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter [J]. IEEE Tran Pattern Anal Mach InteU, 2007, 29(9): 1661-1667.
  • 9Bimbo A D, Dini F. Particle filter-based visual tracking with a first order dynamic model and uncertainty adaptation [J]. Computer Vision and Image Understanding, 2011, 115: 771-786.
  • 10Zivkovic Z, Cemgil A T, Krose B. Approximate Bayesian methods for kernel-based object tracking [J]. Computer Vision and Image Understanding, 2009, 113: 743-749.

二级参考文献19

  • 1朱志宁.粒子滤波算法及应用[M].北京:科学出版社,2010.
  • 2Zhou E, Liu C P, Sun Y, et al. Adaptive tracking window updating algorithm based on particle filtering [J]. 1EEE International Congress on Image and Signal Processing, 2010, 3: 303-307.
  • 3Handschin J E. Monte Carlo techniques for prediction and filtering of non-linear Stochastic processes 1970, 6(3): 555-563.
  • 4Singer S A, Froast P A. On the relative performance of the Kalman and Winner filters [J]. IEEE Transactions on Automatic Control, 1959, 14(8): 390-394.
  • 5Chen H F and Meer P. Robust computer vision through Kernel density estimation [C]//Computer Vision -ECCV, 7th European Conference on Computer Vision Proceedings, 2002: 236-250.
  • 6Chang C, Ansari R. Kernel particle filter for visual tracking [J]. IEEE Signal Processing Letters, 2005, 12(3): 242-245.
  • 7Chang C B, Whiting R H, Athans M. On the state and parameter estimation for maneuvering re-entry vehicle [J]. IEEE Transactions on Automatic Control, 1977, 22(2): 99- 105.
  • 8朱志宇.基于模糊推理的自适应交互多模型目标跟踪算法[J].弹箭与制导学报,2008,28(1):29-32. 被引量:2
  • 9王丹玲,贾笑捷,王京玲,张勤.分布式并行粒子滤波算法结构分析与研究[J].计算机工程与设计,2009,30(6):1444-1445. 被引量:6
  • 10李少军,朱振福.采用粒子滤波的先跟踪后检测算法[J].红外与激光工程,2009,38(2):352-357. 被引量:15

共引文献14

同被引文献31

  • 1刘明,赵孝磊.一种改进的Camshift目标跟踪算法[J].南京理工大学学报,2013,37(5):755-760. 被引量:9
  • 2闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 3董恩增,闫胜旭,佟吉钢.基于主动视觉的人脸检测与跟踪算法研究[J].系统仿真学报,2015,27(5):973-979. 被引量:7
  • 4WANG Z, YANG X, XU Y, et al. CamShift guided particle filter for visual tracking[J]. Pattern Recognition Letters, 2009, 30(4): 407-413.
  • 5YIN M, ZHANG J, SUN H, et al. Multi-cue based CamShift guided particle filter tracking[J]. Eerpert Systems with Applications, 2011, 38(5) : 6313-6318.
  • 6ZHANG Y Y, ZHAO X M, LI F J, et al. Robust object tracking based on simplified codebook masked Camshift algorithm[J]. Mathematical Problems in Engineering, 2015,376494.
  • 7NHAT V Q, KIM S H, YANG H J, et al. Real- time face tracking with instability using a feature- based adaptive model[J]. International Journal of Control, Automation and Systems, 2015, 13 (3) : 725-732.
  • 8XIAJX, RAOWM, HUANGW, etal. Auto- matic multi-vehicle tracking using video cameras: An improved Camshift approach[J]. KSCE Jour- nal of Civil Engineering, 2013, 17 (6): 1462- 1470.
  • 9BRADSKI G R. Computer vision face tracking for use in a perceptual user interface[J]. IEEE Trans Aerospace & Electronic Systems, 1998:214-219.
  • 10LOU Z, JIANG G, WU C. 2D scale-adaptive tracking based on projective geometry[J]. Multi- media Tools and Applications, 2014, 72 (1) : 905-924.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部