期刊文献+

基于视觉认知的禁令交通标志检测

Prohibition Traffic Signs Detection Based on Visual Cognition
下载PDF
导出
摘要 根据交通标志的反差特性会强烈吸引人类视觉注意的设计原则,结合生物视网膜会强烈响应场景中大反差视觉刺激的机理,将基于视觉反差的层次结构的显著性分析框架引入交通标志的检测问题,提出一种适合现实街景中交通标志检测的多线索视觉注意模型,将对交通标志的检测定位转变为对显著目标的发现与分割问题。实验表明,所提方法优于典型的显著性方法在面对现实街景时的目标检测性能。 Considering the design principles that traffic signs is to strongly attract the human visual attention, combining the phenomenon that the retina strongly responds to large contrast visual stimulation, a hierarchy saliency analytic framework based on visual contrast is introduced. The authors propose a multi-cue visual attention model for traffic sign detection in street scene, so traffic sign detection and segmentation problem is converted to saliency object discovery and location problem. Experimental results show that the proposed method is better than typical saliency methods.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期1029-1034,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家重点基础研究发展计划(61399)资助
关键词 交通标志检测 街景 显著性分析 视觉反差 traffic sign detection street scene saliency analysis visual contrast
  • 相关文献

参考文献18

  • 1Fleyeh H, Davami E. Eigen-based traffic sign recog- nition. IET Intelligent Transport Systems, 2011, 5(3): 190-196.
  • 2Gonzhlez , Garrido M, Llorca D. Automatic traffic signs and panels inspection system using computer vision. Intelligent Transportation Systems, IEEE Tran- sactions on, 2011, 12(2): 485-499.
  • 3Zhang K, Sheng Y, Li J. Automatic detection of road traffic signs from natural scene images based on pixel vector and central projected shape feature. Intelligent Transport Systems, 2012, 6(3): 282-291.
  • 4Greenhalgh J, Mirmehdi M. Real-time detection and recognition of road traffic signs. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1498-1506.
  • 5陈龙,潘志敏,毛庆洲,李清泉.利用HOG-LBP自适应融合特征实现禁令交通标志检测[J].武汉大学学报(信息科学版),2013,38(2):191-194. 被引量:18
  • 6Zaklouta F, Stanciulescu B. Warning traffic sign recog- nition using a HOG-based Kd tree. IEEE Intelligent Vehicles Symposium, 2011, 32(14): 1019-1024.
  • 7Khan J F, Bhuiyan S M, Adhami R R. Image segmen- tation and shape analysis for road-sign detection. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96.
  • 8Meuter M, Nunn C, Gormer S M. A decision fusion and reasoning module for a traffic sign recognition system. IEEE Transactions on Intelligent Transpor- tation Systems, 2011, 12(4): 1126-1134.
  • 9Sun Y, Fisher R. Object-based visual attention for computer vision. Artificial Intelligence, 2003, 146(1): 77-123.
  • 10Asakura T, Aoyagi Y, Hirose O K. Real-time recognition of road traffic sign in moving scene image using new image filter//SICE. Iizuka, 2000:13-18.

二级参考文献11

  • 1李宁,陈彬.数字图像处理在道路交通数据采集中的应用研究[J].武汉大学学报(信息科学版),2006,31(9):773-776. 被引量:5
  • 2Broggi A,Cerri P,Medici P. Real Time Road Signs Recognition[A].Istanbul,Turkey,2007.
  • 3Aoyagi Y;Asakura T.A Study on Traffic Sign Recognition in Scene Image Using Genetic Algorithms and Neural Networks[A]台湾台北,1996.
  • 4Fleyeh H. Traffic Sign Recognition by Fuzzy Sets[A].Netherlands,1994.
  • 5Gil P,Maldonado S,Gómez H. Traffic Sign Shape Classification and Localization Based on the Normalized FFT of the Signature of Blobs and 2D Homographies[J].Signal Processing,2008,(12):2943-2945.
  • 6Dalal N,Triggs B. Histograms of Oriented Gradients for Human Detection[A].San Diego,California,USA,2005.
  • 7Zhang Guangcheng;Huang Xiangsheng;Li S Z.Boosting Local Binary Pattern(LBP)-Based Face Recognition[A]广东广州,2004.
  • 8Yang Jian,Yang Jingyu,Zhong D. Feature Fusion:Parallel Strategy vs Serial Strategy[J].Pattern Recognition,2003,(06):1369-1381.doi:10.1016/S0031-3203(02)00262-5.
  • 9徐迪红,唐炉亮.基于颜色和标志边缘特征的交通标志检测[J].武汉大学学报(信息科学版),2008,33(4):433-436. 被引量:21
  • 10甘玲,朱江,苗东.扩展Haar特征检测人眼的方法[J].电子科技大学学报,2010,39(2):247-250. 被引量:22

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部