期刊文献+

一种智能的尘埃监测及告警系统

An Intelligent Dust Monitoring and Alarm System
下载PDF
导出
摘要 随着人财物集约思想逐步深入人心,需要人工值守的机房模式逐步凸显了其缺陷所在,随着无人值守机房模式的提出,如何提出一种全新的、智能的无法值守机房成为了众多学者研究的问题。本文提出了一种智能的尘埃监测及告警系统,即通过引入先进的激光尘埃电子测试仪,对各类设备以及机房环境进行了监测,同时通过引入分布式差分进化算法对数据进行了智能化地融合,解决了不同的厂家、不同的设备、不同的环境的自适应问题,通过实验表明,该方案具有可靠性高、鲁棒性强、敏感性高等特点,具有一定的理论及经济效益。 With the intensive thinking of people's property and property, the need for manual duty room mode gradually highlights its defects, with the unattended computer room mode, how to put forward a new, intelligent computer room has become a problem for many scholars. In this paper, an intelligent dust monitoring and alarm system is proposed, which is based on the advanced laser dust detector. The system has the advantages of high reliability, strong robustness and high sensitivity, and it has a certain theoretical and economic benefits.
作者 黄璐
出处 《数字技术与应用》 2015年第11期78-79,81,共3页 Digital Technology & Application
关键词 分布式 差分进化算法 自适应 传感器网络 Distributed differential evolution algorithm adaptive sensor network
  • 相关文献

参考文献8

  • 1Mei H,Sun H,En C, et al.lmpulsive noise mitigation and dou- bly selective channels estimation for underwater acoustic OFDM with compressed sensing[J].Journal of Convergence Information Technology,2013,8(9):78-87.
  • 2H. Abbass, The self-adaptive pareto differential evolutionalgorithm, IEEE Congr. Evol. Comput. 1 (2002) 831-836.
  • 3J. Arabas, L. Bartnik, K. Opara, Dmea--An algorithm that combines differential mutation with the fitness proportionate selection, in: 2011 IEEE Symposium on Differential Evolution (SDE' 1 1),IEEE,2011,pp.1-8.
  • 4J. Durillo, A. Nebro, C.A.C. Coello, J. Garcia-Nieto, F. Luna, E. Alba, A study of multiobjective metaheuristics when solving parameter scalable problems, IEEE Trans. Evol. Comput. 14 (4) (2010)618-635.
  • 5A.K. Qin, V.L. Huang, P. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput.13(2)(2009)398-417.
  • 6张源峰,孙海信,颜佳泉,蒯小燕.无线传感器网络的自适应预测算法[J].厦门大学学报(自然科学版),2015,54(4):523-527. 被引量:1
  • 7徐振华,黄建国,张群飞.基于EM算法的极大似然分布式量化估计融合新方法[J].电子与信息学报,2011,33(4):977-981. 被引量:6
  • 8李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报,2007,18(5):1130-1137. 被引量:19

二级参考文献27

  • 1Ribeiro A and Giannakis G. Bandwidth-constrained distributed estimation for wireless sensor networks--part II: unknown probability density function [J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2784-2796.
  • 2Wu T and Cheng Q. Distributed estimation over fading channels using one-bit quantization [C]. Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 1968-1972.
  • 3Ramanan S and Walsh J M. Distributed estimation of channel gains in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3097-3107.
  • 4Senol H and Tepedelenlioglu C. Performance of distributed estimation over unknown parallel fading channels [J]. IEEE Transactions on Signal Processing, 2008, 56(12): 6057-6068.
  • 5Arindam k. das mehran mesbahi. Distributed linear parameter estimation over wireless sensor networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1293-1305.
  • 6Cattivelli F S and Sayed A H. Diffusion LMS strategies for distributed estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1035-1048.
  • 7Song En-bin, Zhu Yun-min, Zhou Jie, and You Zhi-sheng. Minimum variance in biased estimation with singular fisher information matrix[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 376-381.
  • 8Ribeiro A and Giannakis G B. Bandwidth-constrained distributed estimation for wireless sensor networks--part I: Gaussian case [J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1131-1143.
  • 9Fang Jun and Li Hong-bin. Distributed adaptive quantization for wireless sensor networks: from Delta modulation to maximum likelihood[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5246-5257.
  • 10Aysal T C and Barner K E. Constrained decentralized estimation over noisy channels for sensor networks [J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1398-1410.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部