2(Editorial Office of 《Journal of China Academy of Electronics and Information Technology》, Beijing 100846,China).大数据时代[J].中国电子科学研究院学报,2013,8(1):27-31. 被引量:43
21,Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th VLDB Conf. New York, 1998. 392~403
32,Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons,1994
43,Knorr E, Ng R. A unified approach for mining outliers: Properties and computation. In: Proc of 1997 Int'l Conf on Knowledge Discovery and Data Mining( KDD'97). Newport Beach, California, 1997. 219~222
54,Knorr E, Ng R. Finding intensional knowledge of distance-based. In: P roc of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 211~222
65,Breuning M, Kriegel H, Ng R. OPTICS-OF: Identifying local outliers. I n: Proc of the 3rd European Conf on Principles and Practice of Knowledge Discove ry in Databases(PKDD'99). Prague, 1999. 262~270
76,Arning A, Agrawal R, Raghavan P. A linear method for deviation in larg e database. In: Proc of Int'l Conf on Data Mining and Knowledge Discovery(KDD'9 6). Portland, 1996. 164~169
87,Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for cat egorical attributes. In: Proc of 1999 Int'l Conf on Data Engineering. Sydney, 19 99. 512~521
98,Agrawal R, Srikant R. Fast algorithms for mining association rules. I n: Proc of 1994 Int'l Conf on Very Large Data Bases (VLDB94). Santiage, Chile, 1 994. 487~499
109,Agrawal R, Imielinski T, Swami A. Mining association rules between set s of items in large databases. In: Proc of ACM SIGMOD Conf on Management of Data (AIGMOD'93). Washington, 1993. 207~216