摘要
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4microchip laser(ML).We find that low-frequency relaxation oscillation(RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well.
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4microchip laser(ML).We find that low-frequency relaxation oscillation(RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well.
基金
Project supported by the Beijing Higher Education Young Elite Teacher Project
China(Grant No.YETP0086)
the Tsinghua University Initiative Scientific Research Programme
China(Grant No.2012Z02166)
the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China(Grant No.2011YQ04013603)