期刊文献+

Relationship between Voronoi entropy and the viscosity of Zr_(36)Cu_(64) alloy melt based on molecular dynamics

Relationship between Voronoi entropy and the viscosity of Zr_(36)Cu_(64) alloy melt based on molecular dynamics
下载PDF
导出
摘要 Molecular dynamics simulation is used to investigate the relationship between Voronoi entropy and viscosity for rapid solidification processing of Zr36Cu64 binary alloy melt. The simulation results at different temperatures, cooling rates, and pressures, show that Voronoi entropy is able to accurately describe the relationship of the transition between the cluster structure and the viscosity of Zr36Cu64 binary alloy melt through Voronoi polyhedron analysis. That is, the higher the degree of order of the microstructure, the lower the Voronoi entropy is and the higher the viscosity is. The simulation provides an important reference for studying metallic glass with high glass-forming ability. Molecular dynamics simulation is used to investigate the relationship between Voronoi entropy and viscosity for rapid solidification processing of Zr36Cu64 binary alloy melt. The simulation results at different temperatures, cooling rates, and pressures, show that Voronoi entropy is able to accurately describe the relationship of the transition between the cluster structure and the viscosity of Zr36Cu64 binary alloy melt through Voronoi polyhedron analysis. That is, the higher the degree of order of the microstructure, the lower the Voronoi entropy is and the higher the viscosity is. The simulation provides an important reference for studying metallic glass with high glass-forming ability.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期422-425,共4页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2013CB733000) the National Natural Science Foundation of China(Grant Nos.51271161 and 51271162)
关键词 alloy melt molecular dynamics simulation Voronoi entropy VISCOSITY alloy melt,molecular dynamics simulation,Voronoi entropy,viscosity
  • 相关文献

参考文献33

  • 1Greer A L 1995 Science 267 1947.
  • 2Wang W H 2012 Prog. Mater. Sci. 57 487.
  • 3Yang L and Guo G Q 2010 Chin. Phys. B 19 126101.
  • 4Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201.
  • 5Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503.
  • 6Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 066102.
  • 7Bernal J 1960 Nature 185 68.
  • 8Gaskell P H 1978 Nature 276 484.
  • 9Feng S D, Qi L, Wang L M, Pan S P, Ma M Z, Zhang X Y, Li G and Liu R P 2015 Acta Mater. 95 236.
  • 10Zhao Y and Hou X X 2015 Chin. Phys. B 24 096601.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部