期刊文献+

Al-doping-induced magnetocapacitance in the multiferroic AgCrS_2

Al-doping-induced magnetocapacitance in the multiferroic AgCrS_2
下载PDF
导出
摘要 In this paper, multiferroics and magnetocapacitive effect of triangular-lattice antiferromagnet Ag Al0.02Cr0.98S2 are investigated by magnetic, ferroelectric, pyroelectric current and dielectric measurement. We find that it is a multiferroic material and the magnetocapacitive effect reaches a factor of up to 90 in an external field of 7 T. The results imply the further possibility of synthesizing the magnetocapacitive materials by modifying the frustrated spin structure in terms of a few B-site doping nonmagnetic ions. In this paper, multiferroics and magnetocapacitive effect of triangular-lattice antiferromagnet Ag Al0.02Cr0.98S2 are investigated by magnetic, ferroelectric, pyroelectric current and dielectric measurement. We find that it is a multiferroic material and the magnetocapacitive effect reaches a factor of up to 90 in an external field of 7 T. The results imply the further possibility of synthesizing the magnetocapacitive materials by modifying the frustrated spin structure in terms of a few B-site doping nonmagnetic ions.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期545-548,共4页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2010CB833102) the National Natural Science Foundation of China(Grant Nos.10974244 11274369 and 11104337)
关键词 AgCrS2 multiferroics magnetocapacitive effect antiferromagnet ferroelectricity magnetoelectric coupling dielectric constant AgAl0.02Cr0.98S2 AgCrS2,multiferroics,magnetocapacitive effect,antiferromagnet,ferroelectricity,magnetoelectric coupling,dielectric constant,AgAl0.02Cr0.98S2
  • 相关文献

参考文献26

  • 1Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756.
  • 2Mostovoy M 2010 Nat. Mater. 9 188.
  • 3Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckerath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston-Halperin E and Schlom D G 2010 Nature 466 954.
  • 4Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392.
  • 5Fang Y, Yan S M, Qiao W, Wang W, Wang D H and Du Y W 2014 Chin. Phys. B 23 117501.
  • 6Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205.
  • 7Jang H, Lee J S, Ko K T, Noh W S, Koo T Y, Kim J Y, Lee K B, Park J H, Zhang C L, Kim S B and Cheong S W 2011 Phys. Rev. Lett. 106 047203.
  • 8Lawes G, Harris A B, Kimura T, Rogado N, Cava R J, Aharony A, Entin W, Yildirim T, Kenzelmann M, Broholm C and Ramirez A P 2005 Phys. Rev. Lett. 95 087205.
  • 9Kim I, Oh Y S, Liu Y, Chun S H, Lee J S, Ko K T, Park J H, Chung J H and Kim K H 2009 Appl. Phys. Lett. 94 042505.
  • 10Finger T, Senff D, Schmalzl K, Schmidt W, Regnanlt L P, Becker P, Bohaty L and Braden M 2010 Phys, Rev. B 81 054430.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部