期刊文献+

高效并行递归高斯SIFT算法的实现 被引量:1

Efficient parallel recursive Gaussian SIFT algorithm
下载PDF
导出
摘要 针对传统尺度不变特征变换scale invariant feature transform(SIFT)算法中计算复杂度高、实时性差的问题,提出一种基于多核处理器的数据级并行递归高斯-尺度不变特征变换(recursive Gaussian filter-scale invariant feature transform,RGFSIFT)算法。利用四阶递归高斯滤波逼近尺度不变特征变换算法中的线性高斯滤波,通过EDMA数据传输技术,将图像数据分割为多块,分配到多个DSP核并行处理。实验结果表明:并行递归高斯-尺度不变特征变换算法的特征点重复率比SIFT算法的高;在图像特征点个数小于或等于500的情况下,多核并行递归高斯-尺度不变特征变换算法的平均加速比为17.97倍。 A parallel RGF-SIFT algorithm is proposed to solve the problem of SIFT algorithm on high computational complexity and poor real-time,exploiting multi-core processor.Fourth-order recursive Gaussian filter is applied to approach linear Gaussian filtering of SIFT algorithm.Then image data are cut multi-block to allocate to multi-core for parallel processing through EDMA data transmission technology.The experimental results show parallel RGF-SIFT algorithm presents higher repetition rate.In the case of feature points less than or equal to five hundred,execution time of parallel RGF-SIFT algorithm accelerated ratio is 17.97 on average.
出处 《中国科技论文》 CAS 北大核心 2015年第20期2382-2385,2394,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20130018110001)
关键词 高斯滤波 尺度不变特征变换 多核处理器 并行技术 Gaussian filters SIFT multi-core processor parallel technology
  • 相关文献

参考文献18

  • 1LOWE D G. Distinctive image features from scakin- variant key-points [J]. International Journal of Com- puter Vision, 2004, 60(2): 91-110.
  • 2KE Yan, SUKTHANKAR R. PCA-SIFT: a more dis- tinctive representation for local image descriptors [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DG, USA, 2004, 2: 506-513.
  • 3MIKOI.AJCZYK K, SCHMID C. A performance eval- uation of local descriptors [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10): 1615- 1630.
  • 4BAY H, ESS A, Tuytelaars T. SURF: speeded-up ro- bust features [J]. Computer Vision and Image Under standing, 2008, 3(110): 346-359.
  • 5HERKKILA M, PIETIKAINEN M, SCHMID C. De- scription of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 6何江舟,陈文光,陈光日,郑纬民,汤志忠,叶寒栋.OpenMDSP:Extending OpenMP to Program Multi-Core DSPs[J].Journal of Computer Science & Technology,2014,29(2):316-331. 被引量:1
  • 7KIM J S, HWANGBO M, KANADE T. Parallel algo- rithms to a parallel hardware: designing vision algo- rithms for a GPU [C] //IEEE 12th International Con- ference on Computer Vision Workshops. Kyoto, IEEE, 2009 : 862-869.
  • 8APON A, WARN S, EMENEKER W, et al. Aecelera ting SIFT on parallel architectures[J]. Cluster, 2009: 577-580.
  • 9QIU Jingbang, HUANG Tianci, IKENAGA T. A 7- Round Parallel Hardware-Saving Accelerator for Gauss- ian and DoG Pyramid Construction Part of SIFT [M]. Computer Vision-ACCV 2009. Springer Berlin Heidel- berg, 2010: 75-84.
  • 10HUANG F C, HUANG S Y, KER J W, et al. High- performance SIFT hardware accelerator for real-time image feature extraction[J]- IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (3) : 340-351.

二级参考文献24

  • 1Karam L, A1Kamal I, Gatherer A, Frantz G, Anderson D, Evans B. Trends in multicore DSP platforms. Signal Process- ing Magazine, IEEE, 2009, 26(6): 38-49.
  • 2Zyren J. Overview of the 3GPP long term evolution physical layer, 2007. http://www.freescale.com/files/wireless_comm/ doc/white_paper/3GFPEVOLUTIONWP.pdf, Nov. 2013.
  • 3Reid A D, Flautner K, Grimley-Evans E, Lin Y. SoC-C: Ef- ficient programming abstractions for heterogeneous multicore systems on chip. In Proc. the 2008 CASES, October 2008, pp.95-104.
  • 4Thies W, Karczmarek M, Amarasinghe S. StreamIt: A lan- guage for streaming applications. In Proe. Int. Conf. Com- piler Construction, April 2002, pp.179-196.
  • 5Liao C, Hernandez O, Chapman B, Chen W, Zheng W. OpenUH: An optimizing, portable OpenMP compiler: Re- search Articles. Concurrency and Computation: Practice 8z Experience, 2007, 19(18): 2317-2332.
  • 6Dave C, Bae H, Min S, Lee S, Eigenmann R, Midkiff S. Ce- tus: A source-to-source compiler infrastructure for multicores. Computer, 2009, 42(11): 36-42.
  • 7Parr T, Quong R. ANTLR: A predicated-LL(k) parser gene- rator. Software Practice 8z Experience, 1995, 25(7): 789- 810.
  • 8Tian X, Girkar M, Shah Set al. Compiler and runtime support for running OpenMP programs on Pentium- and Itanium-architectures. In Proc. the 17th Parallel and Dis- tributed Processing Symposium, April 2003, pp.9-18.
  • 9Mfiller M S. Some simple OpenMP optimization techniques. In Lecture Notes in Computer Science 2104, Eigenmann R, Voss M, (eds.), Springer, 2001, pp.31-39.
  • 10Tian X, Girkar M, Bik A, Saito H. Practical compiler tech- niques on efficient multithreaded code generation for OpenMP programs. Computer Journal, 2005, 48(5): 588-601.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部