期刊文献+

一个新的时变系数分位数回归模型及应用 被引量:1

A Quantile Regression Model with Time Varying Coefficients and Its Applications
原文传递
导出
摘要 结合普通分位数回归的模型结构和可行性最小二乘方法的时变系数特征,在普通分位数回归模型的损失函数中引入动态误差设定,提出了一个新的模型:时变系数分位数回归模型,并给出其模型表示、模型估计以及模型检验等建模方法。时变系数分位数回归模型更能够适应广泛数据类型的建模需求,体现回归系数的时变特征,揭示解释变量对响应变量完整条件分布特征的影响,具有广阔的应用前景。将其应用于组合投资决策分析,构造出VaR风险动态组合投资方案,并与VaR风险静态组合投资方案、方差风险静态组合投资方案、方差风险动态组合投资方案等进行实证比较。结果表明,基于时变系数分位数回归模型的VaR风险动态组合投资方案所得投资效果在收益、方差、Sharpe比率和VaR数值等方面都显著优于其他三种方案。 We propose a new quantile regression model with time varying coefficients by con- sidering both the structure of traditional quantile regression model and the character of time varying coefficients in flexible least square approach. The new model can be estimated by utilizing a flexible quantile regression approach, which is obtained by adding dynamic error to the loss function of tradi- tional quantile regression model. It is very powerful to investigate the regular patter of a wider data. It has broad application prospects because it can not only reflect time varying feature of regression coeffi- cients, but also reveal how predictors influence on the complete conditional distribution of responses. In this paper, the model is applied to portfolio section analysis and to construct a VaR risk based dynamic portfolio scheme. We do empirical analysis and compare the new scheme with those traditional portfolio schemes, including VaR risk based static portfolio, variance risk based dynamic portfolio and variance risk based static portfolio. The empirical results show that our new portfolio scheme is superior to other three portfolio schemes in terms of return, variance, Shame ratio and Var
出处 《数量经济技术经济研究》 CSSCI 北大核心 2015年第12期142-158,共17页 Journal of Quantitative & Technological Economics
基金 国家自然科学基金(71071087) 国家社会科学基金项目(15BJY008) 教育部人文社会科学研究规划基金项目(14YJA790015) 安徽省哲学社会科学规划基金项目(AHSKY2014D103)的资助
关键词 分位数回归 时变系数 可行性分位数回归 动态组合投资 Quantile Regression Time Varying Coeffieient Flexible Quantile Regres-sion Dynamic Portfolio
  • 相关文献

参考文献15

  • 1Berzins J. , Liu C. H. , Trzcinka C. , 2013, Asset Management and Investment Banking [J]. Journal of Financial Economics, 110 (1), 215-231.
  • 2Cannon A. J. , 2011, Quantile Regression Neural Networks & Implementation in R and Application to Precipitation Downscaling [J]. Computers & Geosciences, 37 (9), 1277-1284.
  • 3Chen C. , 2007, A Finite Smoothing Algorithm for Quantile Regression [J]. Journal of Computa- tional and Graphical Statistics, 16 (1), 136-164.
  • 4Fan J. , Zhang J. , Yu K. , 2012, Vast Portfolio Selection With Gross-Exposure Constraints [J]. Journal of the American Statistical Association, 107 (498), 592-606.
  • 5G0mez M.I., Gonzdlez E.R., Melo L.F., 2012, Forecasting Food Inflation in Developing Countries with Inflation Targeting Regimes [J]. American Journal of Agricultural Economics, 94 (1), 153--173.
  • 6Kalaba R. , Tesfatsion L. , 1989, Time-varying Linear Regression via Flexible Least Squares [J]. Computers& Mathematics with Applications, 17 (8), 1215-1245.
  • 7Kalaba R. , Tesfatsion L. , 1996, A Multicriteria Approach to Model Specification and Estima- tion [J]. Computational Statistics, 21 (2), 193-214.
  • 8Koenker R. , Bassett G. , 1978, Regression Quantiles [J]. Econometrica, 46 (1), 33-50.
  • 9Markowitz H., 1952, Portfolio Selection {-J]. The Journal of Finance, 7 (1), 77-91.
  • 10Miron D.J., Kendell S.M., Munshi A.M., Alanazi A.K., Brown T.C., 2013, Time-Var- ying Flexible Least Squares for Thermal Desorption of Gases [J]. International Journal of Chemical Kinet- ics, 45 (6), 374-386.

二级参考文献69

  • 1姜晓华,周仲春.局部调整模型在货币需求分析中的运用——对1994-2003年我国货币需求调整的新考察[J].南方金融,2005(6):15-17. 被引量:3
  • 2张红梅,焦连英.基于局部调整模型的我国现阶段货币需求函数分析[J].价值工程,2006,25(12):123-126. 被引量:3
  • 3柏满迎,孙禄杰.三种Copula-VaR计算方法与传统VaR方法的比较[J].数量经济技术经济研究,2007,24(2):154-160. 被引量:41
  • 4Ahumada H. , Alvaredo F. , Canavese A. , 2008, The Monetary Method to Measure the Shadow Economy: the Forgotten Problem of the Initial Conditions [J], Economics Letters, 101 (2), 97-99.
  • 5Baugnet V. , Collin M. , Dhyne E. , 2007, Monetary Policy and the Adjustment of Belgian Private Bank Interest Rates -an Econometric Analysis [R], Working Paper of National Bank of Belgium.
  • 6Chow G. , 1966, On the Long-run and Short-run Demand for money [J], Journal of Political Economey, 74 (2), 111-131.
  • 7Efron B, 1987, Better Bootstrap confidence Intervals [J], Journal of the American Statistical Association, 82 (397), 171-185.
  • 8Fujiki H. , Tanaka M. , 2010, Currency Demand, New Technology and the Adoption of Electronic Money :Evidence Using Individual Household Data [R], Working Paper of IMES.
  • 9Galvao A F. , Montes-Rojas G. , Park S.Y. , 2009, Quantile Autoregressive Distributed Lag Model With an Application to House Price Returns [R], Working Paper of City University Economics.
  • 10Goldfeld S. M. , 1973, The Demand for Money Revisited [J], Brookings Papers on Economic Activity, 1973 (3), 577-638.

共引文献74

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部