期刊文献+

基于高斯混合模型的音乐情绪四分类研究 被引量:4

Music Emotion Four Classification Research Based on Gaussian Mixture Model
下载PDF
导出
摘要 针对音乐情感复杂难以归类的问题,提出了一种在四分类坐标下建立高斯混合模型进行音乐信号归类的研究方法。在建立模型的基础上,创新地为表示情绪特性的轴两端建立模型使其转换成二层分类器进行加权判别。结果表明,为表示情绪特性的轴建立模型且权值分配在0.7和0.3的条件下,音乐的分类工作可以取得最优结果,其结果明显优于直接为每类情绪建立模型的结果。 For the problem of music emotional complexity and difficult to categorize,we proposed a method to establish Gaussian mixture models in four classifications. On the basis of establish models,we innovated established GMM for shaft at both ends of the emotional model and converted it into two-layer weighted classifier discrimination. The results shows that the GMM for shaft models and weight distribution under the condition of 0.7 and 0.3,the musical work can obtain the best classification result,and the result is better than the result of directly establish models for each type of emotion.
出处 《长春理工大学学报(自然科学版)》 2015年第5期107-111,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 高斯混合模型 音乐情绪分类 加权判决 Gaussian mixture model music emotion classification weighted judgment
  • 相关文献

参考文献5

二级参考文献25

  • 1董梅,杨曾,张健,王能.基于信号强度的无线局域网定位技术[J].计算机应用,2004,24(12):49-52. 被引量:36
  • 2余涛,黄书宝,葛昭攀,陈宇亮,施安.无线局域网环境下的位置服务研究[J].计算机工程,2005,31(14):122-124. 被引量:3
  • 3Bahl P, Padmanabhau V N. RADAR: An In-building RF-based User Location and Tracking System[C]//Proc. of 2000 Annual Joint Conference of the IEEE Computer and Communications Societies. [S. l.]: IEEE Computer Society, 2000.
  • 4Roos T, Myllymaki E Tirri H, et al. A Probabilistic Approach to WLAN User Location Estimation[J]. International Journal of Wireless Information Networks, 2002, 9(3): 155-164.
  • 5Moustafa A. Multivariate Analysis for WLAN Location Determination Systems[C]//Proc. of the 2nd Annual Int'l Conf. on Mobile and Ubiquitous Systems: Networking and Services. San Diego, California, USA: ACM Press, 2005.
  • 6Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(2): 1-38.
  • 7S G Mallat. A Theory for Muhire solution Signal Decomposition: the Wavelet Representation[ J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989.11 (7) :674 - 693.
  • 8T R Downie, B W Silverman. The discrete multiple wavelet transform and thresholding methods[ J]. IEEE Trans on Signal Processing, 1998,46(9) :2558 -256.
  • 9G Tzanetakis, P Cook. Musical genre classification of audio signals [J]. IEEE Trans. on Speech and Audio Processing, 2002, 10 (5) : 293 - 302.
  • 10朱万富 赵仕俊.基于粗糙集的神经网络结构优化设计.计算机防真,2006,(4):12-14.

共引文献27

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部