期刊文献+

基于视觉感知与梯度域的遥感图像对比度增强变分模型

Variational model for contrast enhancement of remote sensing images based on perception and gradient domain
下载PDF
导出
摘要 基于视觉感知增强变分模型与梯度域增强变分模型,提出了一种新的遥感图像对比度增强变分模型.首先,定义梯度增强项为一个高斯增强函数,该函数利用高斯滤波器对图像进行预处理,以克服梯度对噪声敏感的不足,并根据图像中各点梯度信息自适应地选择保持或者放大原图像的梯度信息.然后,将梯度增强项引入到视觉感知增强模型中,以提高图像对比度并保持更多细节信息.最后,利用梯度下降流法最小化模型的能量泛函并采用数值化方法获取最优解.从全局和局部对比度增强两个方面验证了所提模型的有效性.实验结果表明,相对于现有其他增强变分模型,局部对比度增强模型能够取得更好的主观视觉效果和客观性能评价指标. A novel variational model for contrast enhancement of remote sensing images is proposed based on the perceptual-based variational model and the gradient-based variational model. First, the Gaussian enhancement function is designed for the gradient enhancement term. This function uses the Gaussian filter to preprocess the image to overcome the shortage that the gradient is sensitive to noise, and it can keep or enhance the gradient information adaptively according to the gradient information of the source image. Then, the gradient enhancement term is introduced into the perceptualbased enhancement model to improve the contrast and preserve more detail information of the source image, Finally, the gradient descent flow method is applied to minimize the energy functional and the numerical scheme is used to acquire the optimization solution. The effectiveness of the proposed model is verified from global and local contrast enhancement. The experimental results show that compared with other existing variational enhancement models, the local contrast enhancement model can achieve better subjective visual effect and objective performance evaluation.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期1051-1056,共6页 Journal of Southeast University:Natural Science Edition
关键词 视觉感知 梯度域 变分 对比度增强 perception gradient domain variational contrast enhancement
  • 相关文献

参考文献3

二级参考文献41

  • 1王超,叶中付.基于变分的图像增强算法和伪彩色映射[J].数据采集与处理,2005,20(1):18-22. 被引量:8
  • 2谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报,2005,24(6):467-471. 被引量:12
  • 3Leonid I.RUDIN,Stanley OSHER,Emad FATEMI.Nonlinear total variation based noise removal algorithms[J].Phys.D,1992,60(1-4):259-268.
  • 4Bing SONG.Topics in Variational PDE Image Segmentation,Inpainting and Denoising[D].USA:University of California Los Angeles,2003.
  • 5Marino BELLONI,Bernd KAWOHL.A direct uniqueness proof for equations involving the p-Laplace operator[J].Manuscripta math,2002,109(2):229-231.
  • 6Bernd KAWOHL.From Mumford-Shah to Perona-Malik in image processing[J].Math.Methods Appl.Sci,2004,27(15):1803-1814.
  • 7Bernd KAWOHL,Jana STARA.Observations on a nonlinear evolution equation[EB/OL].http://www.karlin.mff.cuni.cz/-rokyta/ preprint/2004-pap/2004-139.ps,2004-12-20.
  • 8Silverman J. Signal processing algorithms for display and enhancement of IR images [ J]. Proc. SPIE Int. Soc. Opt. Eng, 1993,2020:440-450.
  • 9Viekers V E. Plateau equalization algorithm for real-time dispaly of high-quality infrared imagery [ J ]. Optical Engineering, 1996,35 ( 7 ) : 1921-1926.
  • 10Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 1997,43( 1 ) : 1-8.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部