Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology
Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology
摘要
The most critical disadvantages of the Zn-air flow battery system are corrosion of the zinc, which appears as a high self-discharge current density and a short cycle life due to the non-uniform, dendritic, zinc electrodeposition that can lead to internal short-circuit. In our efforts to find a dendrite-free Zn electrodeposition which can be utilized in the Zn-air flow battery, the surface morphology of the electrolytic Zn deposits on a polished polymer carbon composite anode in alkaline, additive-free solutions was studied. Experiments were carried out with 0.1 M, 0.2 M and 0.5 M zincate concentrations in 8 M KOH. The effects of different working conditions such as: elevated temperatures, different current densities and different flow velocities, on current efficiency and dendrite formation were investigated. Specially designed test flow-cell with a central transparent window was employed. The highest Coulombic efficiencies of 80%-93% were found for 0.5 M ZnO in 8 M KOH, at increased temperatures (50-70 ℃), current densities of up to 100 mA.cm2 and linear electrolyte flow velocities higher than 6.7 cm.s1.
参考文献35
-
1Thaller, L. H. 1974. “Electrically Rechargeable Redox Flow Cells.” Presented at the 9th Intersociety Energy Conversion Engineering Conference, San Francisco, USA.
-
2Pan, J. Q., Sun, Y. Z., Wan, P. Y., Wang, Z. H., and Liu, X.G.2005. “Halogen a High-Capacity Cathode for Rechargeable Alkaline Batteries.” Chemical Communications 26 (July): 3340-2.
-
3Rychcik, M., and Skyllas-Kazacos, M. 1988. “Characteristics of a New All-Vanadium Redox Flow Batteiy.” Journal of Power Sources 22 (1): 59-67.
-
4Oriji, G., Katayama, Y., and Miura, T. 2004. “Investigation on V(IV)/V(V) species in a Vanadium Redox Flow Battery.” Electrochimica Acta 49 (19): 3091-5.
-
5Kong, C? Wu, S., Sun, Y., and Li, K. 2011. “Vanadium Redox Batteiy System and Its Energy Storage Application in Wind Farm.” Advanced Materials Research 282-283 (July): 112-5.
-
6Skyllas-Kazacos, M., Kazacos, G., Poon, G., and Verseema, H. 2010. “Recent Advances with UNSW Vanadium-Based Redox Flow Batteries.” International Journal of Energy Research 34 (2): 182-9.
-
7Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N.,Gostick, J. T., and Liu, Q. 2011. “Redox Flow Batteries: A Review.” Journal of Applied Electrochemistry 41 (10): 1137-64.
-
8Yamamura, T., Shiokawa, Y., Yamana, H., and Moriyama,H.2002. “Electrochemical Investigation of Uranium 13-Diketonates for All-Uranium Redox Flow Batteiy.” Electrochimica Acta 48 (1): 43-50.
-
9Shiokawa Y., Yamamura, T., and Shirasaki, K. 2006. “Energy Efficiency of an Uranium Redox Flow Battery Evaluated by the Butler-Volmer Equation.” Journal of the Physical Society of Japan 75 (Suppl): 137-42.
-
10Lloyd, D., Vainikka, T., Murtomaki, L., Kontturi, K., and Ahlberg, E. 2011. “The Kinetics of the Cu2+/Cu+ Redox Couple in Deep Eutectic Solvents.” Electrochemica Acta 56 (14): 4942-8.
-
1日立万胜研制成用水与铝粉发电的新型燃料电池系统[J].新材料产业,2006(6):95-95.
-
2索尼推出微型混合燃料电池系统[J].电源技术,2008,32(6):353-353.
-
3Greg Zimmer.“绿色能源”并非简易事件 高能源电池系统制造是一大挑战[J].电子与电脑,2009,9(2):85-87.
-
4全钒液流储能电池研发工作取得新进展[J].现代材料动态,2007(1):26-26.
-
5我国全钒液流储能电池系统突破万次充放电循环[J].科技风,2011(9):5-6.
-
6新型微生物燃料电池系统[J].光学精密机械,2012(2):36-37.
-
7张涛.大连融科全钒液流电池系统将服役美国[J].钢铁钒钛,2016,37(2):153-153.
-
8李庆,叶强,杨晓光.电解重整式甲醇燃料电池系统[J].化工学报,2013,64(4):1373-1379. 被引量:2
-
9贾旭平.新加坡无人驾驶飞行器用新型燃料电池系统AEROPAK[J].电源技术,2009,33(11):949-951. 被引量:1
-
10我国全钒液流储能电池研究取得进展[J].现代材料动态,2008(9):21-21.