期刊文献+

微分几何教学尝试

Differential Geometry Teaching Experiment
下载PDF
导出
摘要 微分几何是运用微积分的理论研究空间的几何性质的数学分支学科。文中基于微分几何教学实践,倡导依据不同的教学内容、教学时间采用不同的教学方法与模式。举例说明信息技术促进微分几何教学理解,尝试、期盼信息技术优势与传统教育模式的深度融合,努力进行敏捷的全要素配合,力求更好地传递出正能量。通过"简化"微分几何的知识结构,"美化"微分几何教学,加强知识的横向与纵向类比与对照,以期在为学生们提供优质服务的同时实现教学质量的提高。 Differential geometry,one of the branches of mathematics,apply the theory of differential and calculusto study space geometric properties.Advocated in this paper,what different teaching methods and modelsare adoptedare based on the differential geometry teaching practice which is according to different teaching content and teaching time.Illustrating the information technologypromote teaching understanding on differential geometry.Looking forward to the deeply integrate about the advantage of information technology and traditional education.Trying toagile match the total factor and strive to convey the positive energybetter.By "simplified" differential geometry knowledge structure and "beautification" differential geometry teaching,strengthen the transverse and longitudinal comparison and contrast of the knowledge.Expecting toprovide the high-quality service for the students and achieve the improvement of teaching quality at the same time.
出处 《科技创新导报》 2015年第18期162-162,164,共2页 Science and Technology Innovation Herald
基金 南京信息工程大学预研基金(项目编号:2014X021)
关键词 微分几何 教学模式 教学方法 教学质量 Differential geometry Teaching mode Teaching method Quality of teaching
  • 相关文献

参考文献6

二级参考文献33

  • 1程新跃,刘祥伟.关于高等数学课程中几何教学的认识与实践[J].高等数学研究,2006,9(3):11-12. 被引量:2
  • 2Price R H and Crowley R J. Am J Phys[J]. 1986, 53(9): 843.
  • 3Kun-Mu Liu. Am J Phys[J]. 1987, 55(9): 849.
  • 4ММ П ОСТН и КОВ.几何讲义[M].第二学期,北京:高等教育出版社,1992.
  • 5Jackson J D. Classical Electrodynamics[M]. New York: Wiley 1975, 2^nd ed.p, 51.
  • 6Estevez G A and Bhuiyan L B. Am J Phys[J]. 1985, 53(2): 133.
  • 7Riemann B. On the Hypotheses which lie at the Bases of Geometry[j]. Nature, 1873, 8(183) .- 14-17.
  • 8Fitzgerald A,Maclane S. Pure and Applied Mathematics in the People's Republic of China[M]. Washington D C:National Academy of Sciences, 1977.
  • 9Su Buchin. Lectures on Differential Gromrtry[M]. Singapore: World Scientific Publishing,Co Pte Ltd,1981.
  • 10T. Kubota, Einige Bemerkungen zur Affinflachentheorie, Science Reports of the Tohoku Imp. University, Set. I, 1930(19) :163-168.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部