摘要
目的药物重定位是指发掘已有药物新的治疗作用,然而具有潜在治疗作用的药物-疾病往往隐藏在数以百万计的关系对中。该研究基于医疗大数据分析,预测具有潜在治疗关系的药物-疾病关系对。方法将社交网络中推荐系统模型应用于药物重定位研究,并假设具有相似化学结构的药物可能具有相似的适应症。从开源数据库收集已知药物-疾病的治疗关系、副作用关系以及药物和疾病特征描述符,计算得到药物-药物的相似度和疾病-疾病相似度,再构建推荐模型将上述信息融合,并预测具有潜在治疗关系的药物-疾病,最终得到预测关系对的排序列表。结果列表排名前500的关系对中,有12.8%得到临床实验支持或综述报道,20%得到模式生物实验或细胞实验支持。结论相比于已有分类模型和随机抽样结果,本模型可明显提高具有潜在治疗作用药物-疾病的富集程度。
Aim Drug repositioning is to find new indications for existing drugs,however,potential drug-disease relationships are often hidden in millions of unknown relationship. With the analyzing of medical big data,we predict the potential drug-disease relationships. Methods Based on the assumption that similar drugs tend to have similar indications,we applied a recommendation-based strategy to drug repositioning. First,we collected the information of known drug-disease therapeutic effect,side effect,drug characters and disease characters; second,we calculated the drug-drug similarity measurements and diseasedisease similarity measurements; last,we used a collaborative filtering( CF) method to predict unknown drug-disease relationships based on the known drug-disease relationships by integrating the similarity measurements,and built a ranking list of prediction results. Results The experiments demonstrated that among the TOP 500 of the list,12. 8% were supported by clinical experiments or review,and 20% were supported by model organism or cell experiments. Conclusion Compared to the classification model and random sampling results,the CF model can effectively reduce the false positives.
出处
《中国药理学通报》
CAS
CSCD
北大核心
2015年第12期1770-1774,共5页
Chinese Pharmacological Bulletin
基金
国家自然科学基金资助项目(No 31100956,61173117)
国家高技术研究发展计划(863计划)资助项目(No2012AA020405)
关键词
药物重定位
医药大数据
推荐系统
相似性度量
协同过滤
药物和疾病关系预测
机器学习
drug repositioning
biomedical big data
recommendation system
similarity measures
collaborative filtering
drugdisease relationships prediction
machine learning