期刊文献+

基于动态规划算法的最优Context量化器设计

Optimized Context Quantizer Design Based on Dynamic Programming Algorithm
下载PDF
导出
摘要 提出一种针对多进制信源的最优Context量化器设计方法.该方法不仅综合考虑了量化前后条件概率分布的相似性,同时又将条件位符号的取值相关性作为量化合并的依据,从而使得量化后的Context模型能够最大限度地利用信源间相关性,然后动态规划算法被应用于合并相似的条件概率分布,从而实现Context量化.最后量化器被用于图像的小波压缩编码应用.实验结果表明,量化器能够获得与其他优化量化器相近甚至更好的压缩效果. The optimal Context quantizer design method aiming at multi-system information sources was put forward.This method not only focused on the similarity of conditional probability distribution before and after quantization,but at the same time,takes the value correlation of conditional source symbols as the gist of quantization combination so as to use greatly information source correlation of Con-text model after quantization.Then the dynamic programming algorithm was used to merge similar conditional probability distribution to realize Context quantization.Last,the quantizer was used into image wavelet compression coding application.The experiment results show that the quantizer can obtain the similar or even better compression effect compared with others.
出处 《昆明学院学报》 2015年第6期116-120,共5页 Journal of Kunming University
基金 国家自然科学基金资助项目(61062005) 云南省自然科学基金青年基金资助项目(2013FD042) 昆明学院科学研究资助项目(XJL14003)
关键词 Context量化 动态规划 描述长度 信源取值相关性 Context quantization dynamic programming description length information source value correlation
  • 相关文献

参考文献16

  • 1RISSANEN J,LANGDO G G.Universalmodelingandcoding[J].TransactionsonInformationTheory,1981,27(1):12-23.
  • 2CHENJianhua,ZHANGYufeng,SHIXinling.Imagecodingbasedonwavelettransform anduniform scalardeadzonequantizer[J].SignalProcessing:ImageCommunication,2006,21(7):562-572.
  • 3CHENJianhua.Contextmodelingbasedoncontextquantizationwithapplicationinwaveletimagecoding[J].IEEETransImageProcessing,2004,13(1):26-32.
  • 4WUX.Losslesscompressionofcontinuoustoneimagesviacontextselectionandquantization[J].IEEETransonImageProc,1996,6(5):656-664.
  • 5WEINBERGERMJ,SEROUSSIG,SAPIROG.TheLOCOIlosslessimagecompressionalgorithm:principlesandstandardizationintoJPEGLS[J].IEEETransactionsonImageProcessing,2004,9(8):1309-1324.
  • 6TAUBMAND.HighperformancescalableimagecompressionwithEBCOT[J].IEEETransonImageProc,2000,9(7):1158-1170.
  • 7潘泓,WC Siu,夏良正.一种基于二进制小波变换的无损图像编码算法[J].电子与信息学报,2008,30(7):1671-1675. 被引量:5
  • 8周映虹,马争鸣.JPEG2000中重要性编码及上下文建模的改进[J].中国图象图形学报,2008,13(8):1402-1410. 被引量:2
  • 9WUX,CHOUPA,XUEX.Minimum conditionalentropycontextquantization[J].IEEEInternationalSymposiumonInformationTheory,2000,28(3):1-15.
  • 10FORCHHAMMER S,WU X,ANDERSEN JD.Optimalcontextquantizationinlosslesscompressionofimagedatasequences[J].IEEETransactionsonImageProcessing,2004,13(4):509-517.

二级参考文献35

  • 1Shapiro J M. Embedded image coding using zerotrees of wavelets coefficients. IEEE Trans. on Signal Processing, 1993, 41(12): 3445-3462.
  • 2Said A and Pearlman W A. A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. on Circuits and Systems for Video Technology, 1996, 6(3): 243-250.
  • 3Said A and Pearlman W A. An image multiresolution representation for lossless and lossy compression. IEEE Trans .on Image Processing, 1996, 5(9): 1303-1310.
  • 4Zandhi A, Allen J D, Schwartz E L, and Boliek M. CREW: Compression with reversible embedded wavelets. 1995 IEEE Proc. Data Compression Conference., Snowbird, Utah, 1995: 212-221.
  • 5Swanson M D and Tewfik A H. A binary wavelet decomposition of binary images. IEEE Trans. on Image Processing, 1996, 5(12): 1637-1650.
  • 6Caire G, Grossman R L, and Poor H V. Wavelet transform associated with finite cyclic groups. IEEE Trans. on Information Theory, 1993, 39(4): 1157-1166.
  • 7Calderbank A R, Daubechies I, Sweldens W, and Yeo B L. Wavelet transform that map integers to integers. Applied and Computational Harmonic Analysis, 1998, 5(3): 332-369.
  • 8Law N F and Siu W C. Issue of filter design for binary wavelet transform. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, 2001: 3649-3652.
  • 9Antonini M, Barlaud M, Mathieu P, and Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing, 1992, 1(2): 205-220.
  • 10Adams M D and Kossentini F. Reversible integer-to-integer wavelet transform for image compression: performance evaluation and analysis. IEEE Trans. on Image Processing, 2000, 8(6): 1010-1024.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部