期刊文献+

基于教育数据挖掘学生表现预测模型构建研究 被引量:11

Performance Prediction Model Based on Data Mining Based Education Students
下载PDF
导出
摘要 自教育数据挖掘成功从人工智能中独立出来,就获得研究学者的广泛关注,现已成为教育研究领域的热点。为了实现学生表现的准确预测,首先阐述了教育数据挖掘的概念、方法、核心应用及研究动态,并在此基础上从学生表现预测教育数据准备、数据筛选、数据预处理、数据转换、数据挖掘模型建立及结果分析等六个方面详细阐述了教育数据挖掘方法下学生表现预测模型构建的方法及设计流程,以期为未来的研究者提供一种思路和借鉴。 Data mining success from educational independence and from artificial intelligence will attract widespread attention onthe researchers and it has become a hot research field in education. In order to achieve accurate prediction of student performance, firstelaborate the concept of education data mining methods, the core applications and research trends. On this basis, performance predic-tion is from the student data preparation, data filtering, data preprocessing, data conversion, data mining modeling and results analy-sis, elaborated under the educational data mining student performance prediction model. Investigate the construction methods and de-sign processes, with a view to the future and to learn from the ideas provided by the researchers.
作者 彭涛 丁凌云
出处 《黑龙江高教研究》 CSSCI 北大核心 2015年第11期55-58,共4页 Heilongjiang Researches on Higher Education
关键词 教育数据挖掘 学生表现 预测模型构建 educational data mining student performance prediction model
  • 相关文献

参考文献14

  • 1王盛.教育数据挖掘促进高校学生个性化学习途径分析[J].考试周刊,2014(34):176-176. 被引量:8
  • 2孙云帆,齐美玲.数据挖掘在教育应用中的浅析[J].商场现代化,2012(8)693期:161-162.
  • 3Bames T.The q-matrix method:Mining student response data for knowledge[C]// American Association for Artificial Intelligence 2005 Educational Data Mining Workshop.2005.
  • 4PAVLIK,P.,CEN,H.and KOEDINGER,K.R.Learning Factors Transfer Analysis:Using Learning Curve Analysis to Automatically Generate Domain Models[C]// In Proceedings of the 2nd International Conference on Educational Data Mining,2009:121-130.
  • 5Gong Y,Rai D,Beck J E,et al.Does Self-Discipline Impact Students * Knowledge and Learning[J].International Working Group on Educational Data Mining,2009:61-70.
  • 6Perera D,Kay J,Koprinska I,et al.Clustering and sequential pattern mining of online collaborative learning data[J].Knowledge and Data Engineering,IEEE Transactions on,2009(6):759-772.
  • 7洪雪峰.教育数据挖掘下的学习效果探析[J].长沙铁道学院学报(社会科学版),2014,15(2):196-198. 被引量:6
  • 8Khan Z N.Scholastic achievement of higher secondary students in science stream[J].Journal of Social Sciences,2005(2):84.
  • 9Al-Radaideh Q A,Al-Shawakfa E M,Al-Najjar M I.Mining student data using decision trees[C]//International Arab Conference on Information Technology(ACIT 2006),Yarmouk University,Jordan.2006.
  • 10Tahir S,Naqvi S M M R.Factors Affecting Students,Performance A Case Of Private Colleges[J].Bangladesh e-journal of sociology,2006(1):90.

二级参考文献31

  • 1魏顺平.教育技术挖掘:现状与趋势.第13届计算机模拟与信息技术学术会议论文集[Z].2011:25-28.
  • 2Campbell, J. P., DeBlois, P. B. & Oblinger, D. G. AcadEMie Analytics: A New Tool for New Era[J]. Education Review, 2007: 41-51.
  • 3Bienkowski, M., Feng, M., & Means, B. Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics: An Issue Brief[M]. Washington, D. C, 2012.
  • 4Affendey, L. S., Paris, I. H., Mustapha, N., Nasir Sulaiman, M., & Muda, Z. Ranking Of Influencing Factors in Predicting Students' Academic Performance[J]. Information Technology, 2010(4): 832-837.
  • 5Ramaswami, M., & Bhaskaran, R. A CHAID Based Performance Prediction Model in Educational Data Mining[J]. IJCSI International Journal of Computer Science Issues, 2010(1): 10-18.
  • 6Baker, R. S. J. Data Mining for Education. International Encyclopedia of Education[M]. 3rd ed. Oxford, UK: Elsevier, 2011.
  • 7Ogtindokun, M. O. Learning Styles. School Environment and Text Anxiety as Correlates of Learning Outcomes among Secondary School Students[J]. IFE PSYCHOLOGL, 2011(2). 321-366.
  • 8Eisner E W. The Educational Imagination[M]. New York: Macmillan, 1979:103.
  • 9Fulks J. Assessing Student Learning in Higher Education [EB/OL]. (2009-09-28)[2013- 11-20]. http://online, bakersfieldeollege. edu/courseassessment/Seetion2 _Background/Section2_2WhatAssessment. htm.
  • 10Astin A W. Assessment for Excellence: the Philosophy and Practice of Assessment and Evaluation in Higher Education[M]. Phoenix: Oryx, 1993.

共引文献37

同被引文献97

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部