期刊文献+

元素微调对机械合金化Al-Cu-Ti非晶合金成分优化的影响(英文)

Effect of element fitting on composition optimization of Al-Cu-Ti amorphous alloy by mechanical alloying
下载PDF
导出
摘要 为了将Al-Cu-Ti非晶合金中的晶体相含量降到最低,通过调整Cu和Ti元素的含量和球磨时间对Al65Cu35-xTix合金进行优化设计。研究结果表明:增加Ti元素的含量能够降低AlCu2Ti、Cu9Al4和Al2Cu等金属间化合物的含量;而延长球磨时间可以降低合金中元素相的含量,最终确定的最优成分为Al65Cu16.5Ti18.5。另外,所有优化合金中都存在TiH2相,这是由于在球磨作用下工程控制剂甲苯分解出的H原子与Ti元素反应生成了TiH2。TiH2在最优成分Al65Cu16.5Ti18.5合金中的体积分数为4.30%。 In order to minimize the crystal phase in Al-Cu-Ti amorphous powder,Al65Cu35-xTix amorphous powders were optimized via ball milling through adjusting the amount of Cu and Ti elements and the ball milling time.The results show that increasing the mole fraction of Ti can decrease the amount of Al Cu2Ti,Cu9Al4,and Al2Cu intermetallics formed during the process of ball milling;and prolonging the ball milling time can reduce the element crystalline phase to almost none.The optimal composition is determined to be Al65Cu16.5Ti18.5.TiH2 forms in all selected Al65Cu35-xTix amorphous powders during the process of optimization.H atom is decomposed from toluene and reacts with Ti during ball milling,leading to the formation of TiH2.The volume fraction of TiH2 in Al65Cu16.5Ti18.5 amorphous powder is measured to be 4.30%.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3348-3353,共6页 中国有色金属学报(英文版)
基金 Projects(51271036,51471035,51101018)supported by the National Natural Science Foundation of China Project supported by the Program of"One Hundred Talented People"of the Chinese Academy of Sciences
关键词 Al基非晶合金 工艺优化 湿混 TiH2 Al-based amorphous alloy process optimization wet milling TiH2
  • 相关文献

参考文献21

  • 1WEI X, HAN F S, WANG X F, WANG X F, WEN C. Fabrication of Al-based bulk metallic glass by mechanical alloying and vacuum hot consolidation [J]. Journal of Alloys and Compounds, 2010, 501(1): 164-167.
  • 2CAI A H, LIU Y, AN W K, ZHOU G J, LUO Y, LIT L, LI X S, TAN X F. Prediction of critical cooling rate for glass forming alloys by artificial neural network [J]. Materials Design, 2013, 52: 671-676.
  • 3SAGEL A, WUNDERLICH R K, FECHT H J. Formation and crystallization behavior of amorphous Zr6oAll0Ni9Cul8CO3 produced by mechanical alloying and rapid quenching [J]. Materials Science Forum, 1997, 235-238: 389-394.
  • 4ENAYATI M H, SCHUMACHER P. Amorphization of Ni60Nbz0Zr20 by mechanical alloying [J]. Materials Science and Engineering A, 2004, 375-377: 812-814.
  • 5SCHLORKE N, ECKERT J, SCHULTZ L. Formation and stability of bulk metallic glass forming Mg-Y-Cu alloys produced by mechanical alloying and rapid quenching [J]. Materials Science Forum, 1998, 269-272: 761-766.
  • 6KRASNOWSKI M, ANTOLAK-DUDKA A, KULIK T. Bulk amorphous A185Fe5 alloy and AlssFels-B composites with amorphous or nanocrystalline-matrix produced by consolidation of mechanically alloyed powders [J]. Intermetallics, 2011, 19: 1243-1249.
  • 7原燕波,王志伟,郑瑞晓,郝晓宁,Kei AMEYAMA,马朝利.机械合金化和烧结工艺对Al-Ni-Y-Co-La合金显微组织及力学性能的影响(英文)[J].Transactions of Nonferrous Metals Society of China,2014,24(7):2251-2257. 被引量:3
  • 8MULA S, MONDAL K, GHOSH S, PABI S K. Structure and mechanical properties of AI-Ni-Ti amorphous powder consolidated by pressure-assisted and spark plasma sintering [J]. Materials Science and Engineering A, 2010, 527: 3757-3763.
  • 9WANG W H, XIAO K Q, DONG Y D, HE Y Z, WANG M. A study on mechanically alloyed amorphous A1Fe powder by X-ray diffraction and Mo¨ ssbauer spectroscopy [J]. Joumal of Non-crystalline Solids, 1990, 124(1): 82-85.
  • 10ZHANG Y F, LU L, YAP S M. Prediction of the amount of PCA for mechanical milling [J]. Journal of Materials Processing Technology 1999, 89-90: 260-265.

二级参考文献19

  • 1孙现众,潘洪革,高明霞,李锐,林燕,马帅.Cycling stability of La-Mg-Ni-Co type hydride electrode with Al[J].中国有色金属学会会刊:英文版,2006,16(1):8-12. 被引量:2
  • 2HE Y, POON S J, SHIFLET G J. Synthesis and microstructural evolution ofAl-Ni-Fe Gd metallic glass by mechanical alloying [J]. Science, 1988, 241:1640- 1642.
  • 3INOUE A. Bulk amorphous alloys [J]. Progress Materials Science, 1988, 43: 365-520.
  • 4KIM Y H, INOUE A, MASUMOTO T. Elevated-temperature strength of an A188Ni9Ce2Fet amorphous alloy containing nanoscalc fcc-AI particles [J]. Materials Transactions JIM, 1992, 33:669- 674.
  • 5ZHONG Z C, JIANG X Y, GREER A L. Nanocrystallization in Al-based amorphous alloys [J]. Philosophical Magazane B, 1997, 76(4): 505-510.
  • 6TSAI A P , KAM1YAMA T, KAWAMURA Y. Formation and precipitation mechanism of nanoscale AI particles in AI-Ni base amorphous alloys [J]. Acta Materialia, 1997, 45(4): 1477-1487.
  • 7GLORIANT T, PING D H, HONO K, GREER A L, BARO M D. Nanostructured AlssNi4Sms alloys investigated by transmission electron and field-ion microscopies [J]. Materials Science and Engineering A, 200 1, 304:315-320.
  • 8INOUE A, K1MURA H. High-strength aluminum alloys containing nanoquasicrystalline panicles [J]. Material Science and Engineering A, 2000, 286(1): 1-10.
  • 9INOUE A, SOBU S, LOUZGUINE D V, KIMURA H, SASAMORI K. Ultrahigh strength AI-based amorphous alloys containing Sc [J]. Materials Research, 2004, 19:1539-1543.
  • 10PORTIER R A, OCHIN P, PASKO A, MONASTYRSKY G E. Spark plasma sintering of Cu-AI-Ni shape memory alloy [J]. Joumal of Alloys and Compounds, 2013, 577(1): s472-s477.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部