期刊文献+

一类时滞计算机网络病毒模型的动力学行为(英文) 被引量:1

Dynamics of an epidemic model of computer virus with delays
下载PDF
导出
摘要 研究了一类具有2个时滞的SLBRS计算机病毒模型的局部稳定性和局部Hopf分支.以2个时滞的不同组合为分支参数,得到了模型的局部稳定性和局部Hopf分支存在的充分条件.利用中心流形定理和规范型理论研究了Hopf分支的方向和稳定性等性质.最后,利用仿真示例对理论分析结果的正确性进行了验证. An SLBRS computer virus model with two delays is considered.Local stability and local Hopf bifurcation of this model are investigated.Sufficient conditions for local stability and the existence of local Hopf bifurcation are obtained by regarding different combinations of the two delays as the bifurcation parameters.In particular,the properties of Hopf bifurcation including direction and stability are investigated by the normal form method and center manifold theory.Some numerical simulations are used to illustrate the theoretical results.
作者 张子振
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期677-686,共10页 Journal of Zhejiang University(Science Edition)
基金 Supported by Natural Science Foundation of the Higher Education Institutions of Anhui Province(KJ2014A005,KJ2014A006)
关键词 时滞 HOPF分支 SLBRS模型 稳定性 周期解 delays Hopf bifurcation SLBRS model stability periodic solutions
  • 相关文献

参考文献11

  • 1WIERMAN J C, MARCHETTE D J. Modeling com- puter virus prevalence with a susceptible infected-sus ceptible model with reintroduction[J]. Computational Statistics and Data Analysis, 2004,45 ( 1 ) : 3-23.
  • 2YANG Maobin, ZHANG Zhufan, LI Qiang, et al. An SLBRS model with vertical transmission of computer virus over the internetEJ]. Discrete Dynamics in Nature and Society, 2012:1-17. doi: 10. 1155/2012/925648.
  • 3MISHRA B K, PANDEY S K. Dynamic model of worms with vertical transmission in computer network[J]. Ap- plied Mathematics and Computation, 2011,217 ( 21 ) : 8438-8446.
  • 4MISHRA B K, KESHRI N. Mathematical model on the transmission of worms in wireless sensor network [J]. Applied Mathematical Modelling, 2013, 37 ( 6 ) 4103-4111.
  • 5LI Xiuling, WEI Junjie. On the zeros of a fourth de- gree exponential polynomial with applications to a neu- ral network model with delays[J]. Chaos, Solitons and Fractals,2005,26(2) ..519-526.
  • 6ZHANG Shaolin, ZHU Wanzhen. Uniform persistence and stability in a stage structure for a class of ecological system with time delayEJ]. Journal of Zhejiang University: Science Edition,2006,33(4) ..376-378.
  • 7FENG Liping, LIAO Xiaofeng, LI Huaqing, et al. Hopf bifurcation analysis of a delayed viral infection model in computer networks[J]. Mathematical and Computer Mod- elling,2012,56(7-8) :167-179.
  • 8LIU Juan, LI Yimin. Hopf bifurcation analysis of a predator-prey system with delays[J]. Journal of Zhe-jiang University: Science Edition,2013,40(6) :618-626.
  • 9DENG Lianwang, WANG Xuedi, PENG Miao. Hopf bifurcation analysis for a ratio dependent predator-prey system with two delays and stage structure for the predator[J]. Applied Mathematics and Computation, 2014,231(15) :214-230.
  • 10HASSARD B D, KAZARINGOFF N D, WAN Y H. Theory and Applications of Hopf Bifurcation [ M]. Cambridge : Cambridge University Press, 1981.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部