期刊文献+

情感分析及可视化方法在网络视频弹幕数据分析中的应用 被引量:68

Utilization of Sentiment Analysis and Visualization in Online Video Bullet-screen Comments
原文传递
导出
摘要 【目的】利用情感分析技术提取弹幕评论中包含的情感数据并对其进行可视化,获取网络视频的情感特征及走势。【应用背景】网络视频弹幕中的评论信息经情感分析及可视化处理后可作为视频的情感标签,在此基础上建立基于评论情感的视频检索模式。【方法】利用句子级别的情感分析方法,建立基于情感词典的弹幕情感分析模型,对评论文本进行情感词抽取及情感值计算,并结合时间序列进行分析。【结果】获取弹幕中的情感数据,绘制弹幕评论的多维情感类别雷达图、情感词标签云和情感趋势曲线等。【结论】利用情感分析及可视化方法,可以帮助用户获取网络视频弹幕数据中包含的情感信息,进而提供一种新的视频检索途径。 [Objective] By collecting and visualizing the sentiment information from bullet-screen comments, we can extract the emotion features and the trend of online videos. [Context] The visualized information of bullet-screen comments can be considered as sentiment tags. Based on these labels of online video, a new retrieval model focusing on comment emotion can be raised. [Methods] According to sentence level sentiment analysis, the study model of sentiment analysis towards bullet-screen comments is developed, including process of constructing sentiment word dictionary, extracting sentiment words and calculating weight value of comments based on time series. [Results] Analyzing tools of radar map, tag cloud and trend-curve diagram are utilized to present the outcome. [Conclusions] Sentiment analysis and visualization methods utilized in bullet-screen comments can provide a new approach to retrieve online videos.
出处 《现代图书情报技术》 CSSCI 2015年第11期82-90,共9页 New Technology of Library and Information Service
基金 国家社会科学基金项目“用户评论情感分析及其在竞争情报服务中的应用研究”(项目编号:11CTQ022)的研究成果之一
关键词 弹幕 情感分析 可视化视 频检索 Bullet screen Sentiment analysis Visualization Video retrieval
  • 相关文献

参考文献13

  • 1AcFun 弹幕视频网[DB/OL]. [2015-04-17]. hrtp://www.acfun.tv/.
  • 2哔哩哔哩弹幕视频网[DB/OL].[2015-04-17]. http://www.bilibili.com/.
  • 3Pang B, Lee L. Thumbs up.: Sentiment Classification UsingMachine Learning Techniques [C]. In: Proceedings of theConference on Empirical Methods in NLP. Morristown: ACL,2002: 79-86.
  • 4刘志明,刘鲁.基于机器学习的中文微博情感分类实证研究[J].计算机工程与应用,2012,48(1):1-4. 被引量:125
  • 5Yu H, Hatzivassiloglou V. Towards Answering OpinionQuestions: Separating Facts from Opinions and Identifyingthe Polarity of Opinion Sentences [C]. In: Proceedings of theConference on Empirical Methods in NLP. Morristown: ACL,2003:129-136.
  • 6Hu M, Liu B. Mining and Summarizing Customer Reviews[C]. In: Proceedings of the 10th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining. NewYork: ACM, 2004:168-177.
  • 7Kim S M, Hovy E. Determining the Sentiment of Opinions[C]. ImProceedings of the 20th International Conference onComputational Linguistics. Morristown: ACL, 2004:1367-1373.
  • 8Yang S, Li S, Zheng L, et al. Emotion Mining Reasearch onMicroblog [C]. In: Proceedings of the 1st IEEE Symposiumon Web Society (SWS’09). 2009: 71-75.
  • 9徐琳宏,林鸿飞,赵晶.情感语料库的构建和分析[J].中文信息学报,2008,22(1):116-122. 被引量:113
  • 10刨丁解羊中文分词器v3.2 [K/OL]. [2015-04-17]. http://www.crsky.com/soft/22209.html.

二级参考文献42

共引文献397

同被引文献707

引证文献68

二级引证文献499

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部