期刊文献+

一个充分下降LS型共轭梯度算法的全局收敛性 被引量:1

The convergence property of a sufficient descent LS-type conjugates gradient method
下载PDF
导出
摘要 共轭梯度法是求解大型无约束非线性优化问题的一种常用方法,在应用中通常以负梯度方向作为其自动重启方向.该文在LS共轭梯度法的基础上,结合一种新的自动重启方向,证明了算法的自动充分下降性和在强Wolfe线搜索下的全局收敛性,给出的数值试验结果表明算法是有效的. The conjugate gradient method is a common method for solving large-scale unconstrained nonli rectlon IS usua near optimization problems, and in practice, the negative gradient diused as the automatic restart direction. In this paper, based on the LS conjugate gradient method and a new automatic restart direction, the corresponding algorithm is demonstrated to possess the property of automatically generating sufficient descent and the global convergence of the search in strong Wolfe line. The given numerical results show that the proposed algorithm is efficent.
作者 林穗华
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期811-815,821,共6页 Journal of Central China Normal University:Natural Sciences
基金 广西高校科研项目(ZD2014143) 广西民族师范学院科研项目(2013RCGG002) 广西重点培育学科(应用数学)建设项目(桂教科研[2013]16)
关键词 无约束优化 共轭梯度法 充分下降性 自动重启 全局收敛性 unconstrained optimization conjugate gradient method sufficient descent adaptive restars global convergence
  • 相关文献

参考文献12

  • 1FLETCHER R, REEVES C. Function minimization by con- jugate gradients[J]. Computer Journal, 1964, 7 149-154.
  • 2戴或虹,袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2001.
  • 3POWELL M J D. Noneonvex Minimization Calculations and the Conjugate Gradient Method[M]. Numerical Analysis, Berlin: Springer-Verlag, 1984: 487-500.
  • 4GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization [J]. SIAM Journal on Optimization, 1992, 2(1).. 21-42.
  • 5喻高航,关履泰.具有充分下降性的修正PRP算法及其收敛性[J].中山大学学报(自然科学版),2006,45(4):11-14. 被引量:10
  • 6YUAN G L. Modified nonlinear conjugate gradient methods with sufficient descent property of large-scale optimization problems[J]. Optimization Letters, 2009, 3 11-21.
  • 7DAI Y H, KOU C X. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search[J]. SIAM Journal on Optimization, 2013, 23:296-320.
  • 8HAGER W W, ZHANG H. A new conjugate gradient meth- od with guaranteed descent and an efficient line search[J]. SIAM Journal on Optimization, 2005, 16:170 192.
  • 9WEI Z, YAO S, LIU L. The convergence properties of some new conjugate gradient methods[J]. Applied Mathematics and Computation, 2006, 183 1341-1350.
  • 10吴庆军.一个修改的HS共轭梯度算法及其收敛性[J].华中师范大学学报(自然科学版),2014,48(4):474-478. 被引量:1

二级参考文献42

  • 1喻高航,关履泰.具有充分下降性的修正PRP算法及其收敛性[J].中山大学学报(自然科学版),2006,45(4):11-14. 被引量:10
  • 2POLAK E,RIBIERE G.Note sur la xonvergence dedirections conjugees[J].Rev Francaise informat Recherche Operatinelle,1969,16(3):35-43.
  • 3POLYAK B T.The conjugate gradient method in extreme problems[J].USSR Comp Math and Math Phys,1969,9:94-112.
  • 4Al-BAAI M.Descent property and global convergence of the Fletcher-Reeves method with inexact line search[J].IMA J Numer Anal,1985,5:121-124.
  • 5GILBERT J C,NOCEDAL J.Global convergence properties of conjugate gradient methods for optimization[J].SIAM Journal of Optimization,1992,2(1):21-42.
  • 6GRIPPO L,LUCIDI S.A globally convergent version of the Polak-Ribière conjugate gradient method[J].Mathematics Programming,1997,78:375-391.
  • 7GRIPPO L,LUCIDI S.Convergence conditions,line search algorithms and trust region implementations for the Polak-Ribière conjugate gradient method[J].Optimization Methodsand Software,2005,20(1):71-98.
  • 8POWELL M J D.Nonconvex minimization calculations and the conjugate gradient method[C]∥Lecture Notes in Mathematics,Berlin:Springer-Verlag,1984,1066:122-141.
  • 9DAI Y.Analyses of conjugate gradient methods[D].Institute of Computational Mathematics and Scientific/Engineering Computing,Chinese Academy of Science (in Chinese),1997.
  • 10POWELL M J D.Convergence properties of algorithms for nonlinear optimization[J].SIAM Review,1986,28:487-500.

共引文献25

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部