期刊文献+

Au-Si_6-Au纳米结点电子输运行为的理论计算

Theoretical calculation of electron transport behavior of Au-Si_6-Au nanoscale junctions
下载PDF
导出
摘要 运用密度泛函理论结合非平衡格林函数的方法,对Si6原子链与两半无限Au(100)-3×3电极耦合构成纳米结点的电子输运行为进行了理论模拟,对结点在不同距离下的电导、结合能进行了计算,结果得到当两电极距离为2.219nm时,结点结合能较大,结构比较稳定,此时Si-Si平均键长为0.213nm,Si-Au键长为0.228nm.对于稳定结构结点,平衡电导为1.093G0,电子主要通过Si原子的px与py态电子形成的π键进行传输;在-1.2-1.2V的电压范围内,Si原子链导体具有比较稳定的电导,表现出类似金属的导电特性,其I-V曲线近似为直线关系. Electron transport behavior of Au-Si6 -Au nanoscale junctions, which consists of six silicon atoms sandwiched between two semi--infinite Au(100)--3 × 3 electrodes, were investigated with combination of density functional theory and the non-equilibrium green's function method from first principles. We calculated conductance and the binding energy in different distance. The results show that the binding energy of junctions is near to maximum and the structure is stable when dz= 2. 219 nm. The corresponding average length of St-St and Si-Au bond is 0. 213 nm and 0. 228 nm, respectively. Besised, the equilibrium conductance is 1. 093G0. The electrons transmit mainly through the tunneling channel of bonds formed by px and Py orbital electrons of Si atoms. In voltage range from -1.2 to 1.2 V, silicon atomic chain conductor has a stable electron transport behavior, and the I-V curve of the junctions show approximate linear feature similar to the metal conductor.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期861-866,共6页 Journal of Central China Normal University:Natural Sciences
基金 四川省自然科学基金项目(13ZB0207) 宜宾学院科研基金项目(2012S12)
关键词 纳米结点 硅原子链 电子输运 第一性原理 nanoscale iunctions silicon atomic chain electron transport first principles
  • 相关文献

参考文献28

  • 1EGAMI Y, AIBA S, HIROSE K, et al. Relationship be- tween the geometric structure and conductance oscillation in nanowires[J]. Journal of Physics, Condensed Matter, 2007, 19(36): 365201(1-10).
  • 2THYGESEN K S, JACOBSEN K W. Four-atom period in the conductance of monatomic A1 wires [J]. Phys Rev Lett, 2003, 91: 146801(1-4).
  • 3SMIT R H M, UNTIEDT C, YANSON A I, et al. Common origin for surface reconstruction and the formation of chains of metal atoms[J]. Phys Rev Lett, 2001, 87: 266102(1-4).
  • 4SMIT R H M, UNTIEDT C, RUBIOBOLLINGER G, et al. Observation of a parity oscillation in the conductance of atomic wires[J]. Phys Rev Lett, 2003, 91:076805(1 4).
  • 5BAHN S R, JACOBSEN K W. Chain formation of metal at- oms[J]. Phys Rev Lett, 2001, 87: 266101(1-4).
  • 6LEE Y J, BRANDBYGE M, PUSKA M J, et al. Electron transport through monovalent atomic wires[J]. Phys Rev B, 2004, 69: 125409(1-5).
  • 7WAN C C, MOZOS J L, TARASCHI G, et al. Quantum transport through atomic wiresEJJ. Phys Rev Lett, 1997, 71:419 421.
  • 8TONGAY S,SENGER R T, DAG S, et al. A bi nitio elec- tron transport calculations of carbon based string structures [J]. PhysRev Lett, 2004, 93:136404(1-5).
  • 9SENGER R T, TONGAY S, DURGUN E, et al. Atomic chains of group-IV elements and III-V and II-VI binary com- pounds studied by a first-principles pseudopotential method [J]. PhysRevB, 2005, 72(7): 075419(1-9).
  • 10LANDMAN U, BARNETT R N, SCHERBAKOV A G. et al. Metal-semiconductor nanocontacts: silicon nanowires [J]. Phys Rev Lett, 2000, 85: 1958-1961.

二级参考文献30

  • 1Chen X C, Xu Y, Zeng Z Y 2008 Physica B 403 3185
  • 2XiaoX B, Zhou GH, YangM, Li Y, XuZF2004 Chin. Phys. 13 1531
  • 3Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104R
  • 4Lang N D, Avouris P H 1998 Phys. Rev. Lett. 81 3515
  • 5Lang N D, Avouris P H 2000 Phys. Rev. Lett. 284 35
  • 6Lang N D 1997 Phys. Rev. Lett. 79 1357
  • 7Lang N D 1997 Phys. Rev. B 55 4113
  • 8Masakuni Okamoto, Kunio Takayanagi 1999 Phys. Rev. B 60 7808
  • 9Smit R H M, Untiedt C, Rubio-Bollinger G, Segers R C, van Ruitenbeek J M 2003 Phys. Rev. Lett. 91 076805
  • 10Trew R J, YanJ B, Mock PM 1991 Proc. IEEE79598

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部