期刊文献+

疏水表面冷凝的可控毛细力微对象操作方法与实验 被引量:2

Micromanipulation Method and Experiments of Controllable Capillary Force Based on Condensation on Hydrophobic Surface
原文传递
导出
摘要 提出一种疏水表面冷凝的可控毛细力微操作方法,所研制的液滴操作手可实现操作液滴的动态控制,相应地调控液桥毛细力.建立疏水表面冷凝的单液滴生长模型,分析最小液滴半径、过冷度、饱和温度等参数的影响;通过拾取和释放理论模型,讨论微对象的拾取和释放进程;搭建微操作实验系统,实验分析疏水探针端面液滴冷凝及影响毛细力变化的因素.1 mm×1 mm×0.52 mm微型硅片(重力12.1μN)和直径200μm、壁厚4μm薄壁微球(重力5.069 n N)的操作实验验证了该方法的有效性. On the basis of the presented micromanipulation method of condensation on hydrophobic surface, the volume of the water droplet on the hydrophobic tip surface can be dynamically varied which helps to obtain appropriate capillary lifting forces using the designed droplet micromanipulator. The single droplet growth model is established to analyze the influence of the minimum radius of droplet, the supercooling degree and the saturation temperature. Accordingly, the operational process of picking up and releasing are discussed by the theoretical models. With the assistance of a customized motion platform, the droplet formation on hydrophobic tip and the capillary lifting force generated during the manipulation process are experimentally characterized. Micromanipulation tasks of pick-and-place the micro silicon chips (1 mm×1 mm×0.52 mm, 12.1 μN) and thin-wall microspheres with diameters of 200 μm, wall thickness of 4 μm (5.069 nN) are conducted to verify the feasibility of the presented method.
出处 《机器人》 EI CSCD 北大核心 2015年第6期648-654,共7页 Robot
基金 机器人技术与系统国家重点实验室自主研究课题(SKLRS201301A01) 长江学者和创新团队发展计划(IRT0915)
关键词 微操作 毛细力 冷凝 疏水 液滴 micromanipulation capillary force condensation hydrophobic liquid droplet
  • 相关文献

参考文献21

  • 1Nah S K, Zhong Z W. A microgripper using piezoelectric actu- ation for micro-object manipulation[J]. Sensors and Actuators A: Physical, 2007, 133(1): 218-224.
  • 2韩江义,游有鹏,王化明,朱剑英.夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):184-189. 被引量:9
  • 3Chen T, Sun L N, Chen L G, et al. A hybrid-type electrostat- ically driven microgripper with an integrated vacuum tool[J]. Sensors and Actuators A: Physical, 2010, 158(2): 320-327.
  • 4Chu J K, Zhang R, Chen Z E A novel SU-8 electrothermal mi- crogripper based on the type synthesis of the kinematic chain method and the stiffness matrix method[J]. Journal of Microme- chanics and Microengineering, 2011, 21 (5): No.054030.
  • 5Kim D H, Lee M G, Kim B, et al. A superelastic alloy mi- crogripper with embedded electromagnetic actuators and piezo- electric force sensors: A numerical and experimental study[J]. Smart Materials and Structures, 2005, 14(6): 1265-1272.
  • 6Kohl M, Krevet B, Just E. SMA microgripper system[J]. Sen- sors and Actuators A: Physical, 2002, 97-98: 646-652.
  • 7Ford S, Macias G, Lumia R. Single active finger IPMC mi- crogripper[J]. Smart Materials and Structures, 2015, 24(2): No.025015.
  • 8Rong W B, Fan Z H, Wang L E et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8): No.085002.
  • 9Feddema J T, Xavier E Brown R. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics, 2001, 1(2): 139-153.
  • 10Al Amin A, Jagtiani A, Vasudev A, et al. Soft microgripping us- ing ionic liquids for high temperature and vacuum applications [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): No.125025.

二级参考文献30

  • 1Van Spengen W M, Puers R and Wolf I D 2002 J. Micromech. Microeng. 12 702.
  • 2Mastrangelo C H and Hsu C H 1993 J. Microelectromech. Syst. 2 33.
  • 3Hariri A, Zu J W and Mrad R B 2007 J. Microelectromech. Syst. 16 1276.
  • 4Feddema J T, Xavier P, and Brown R 2001 J. Micromechatron. 1 139.
  • 5Zhou Q, Aurelian A, Chang B, Corral C D and Koivo H N 2004 J. Micromechatron. 2 227.
  • 6Meniciassi A, Eisinberg A, Izzo I and Dario P 2004 IEEE/ASME Trans. Mechatron. 9 311.
  • 7Saito S, Motokado, Obata K J and Takahashi K 2005 Appl, Phys. Lett. 87 234103.
  • 8Grutzeck H and Kiesewetter L 2002 Microsystem Technol. 8 27.
  • 9Vasudev A and Zhe J 2008 Appl. Phys. Lett. 93 103503.
  • 10Marmur A 1993 Langmuir 9 1922.

共引文献10

同被引文献21

  • 1WASON J D, WEN J T, GORMAN J J, et al.Automated multiprobe microassembly using vision feedback[J].IEEE Transactions on Robotics, 2,8(5): 1090-1103.
  • 2LI X, CHEAH C C, HU S, et al.Dynamic trapping and manipulation of biological cells with optical tweezers[J].Automatica, 3,9(6): 1614-1625.
  • 3CHEN Haoyao, SUN Dong.Moving groups of microparticles into array with a robot-tweezers manipulation system[J].IEEE Transactions on Robotics, 2,8(5): 1069-1080.
  • 4LENDERS C, GAUTHIER M, COJAN R, et al.Three-DOF microrobotic platform based on capillary actuation[J].IEEE Transactions on Robotics, 2,8(5): 1157-1161.
  • 5DOPFER D, PALZER S, HEINRICH S, et al.Adhesion mechanisms between water soluble particles[J].Powder technology, 3,8: 35-49.
  • 6FANTONI G, HANSEN H N, SANTOCHI M.A new capillary gripper for mini and micro parts[J].CIRP Annals-Manufacturing Technology, 3,2(1): 17-20.
  • 7AL A A, JAGTIANI A, VASUDEV A, et al.Soft microgripping using ionic liquids for high temperature and vacuum applications[J].Journal of Micromechanics and Microengineering, 1,1(12): 125025-125032.
  • 8VASUDEV A, ZHE J.A capillary microgripper based on electrowetting[J].Applied Physics Letters, 2008, 93(10): 103503-103505.
  • 9LUTFURAKHMANOV A, LOKEN G K, SCHULZ D L, et al.Capillary-based liquid microdroplet deposition[J].Applied Physics Letters, 0,7(12): 124107-124109.
  • 10LAMBERT P, SEIGNEUR F, KOELEMEIJER S, et al.A case study of surface tension gripping: the watch bearing[J].Journal of Micromechanics and Microengineering, 6,6(7): 1267-1276.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部