期刊文献+

一种可迭代基于多向自相关的航拍电力线图像增强方法 被引量:9

An Iterable Multidirectional Autocorrelation Approach for Aerial Power Line Image Enhancement
原文传递
导出
摘要 针对无人机航拍电力线图像环境背景复杂、电力线目标细弱导致目标识别率低的问题,提出了一种可迭代运行的多向自相关(iterable multidirectional autocorrelation,IMA)增强方法.该方法根据航拍图像中电力线目标的局部纵向及横向灰度分布特征设计有效的滤波模板,用方向滤波的结果进行自相关增强.同时,这种自我增强可以多次迭代运行以达到满意的图像增强效果.通过一系列实验将Canny、Hessian与IMA方法的增强结果进行对比,实验结果显示,所提出的IMA方法比Canny和Hessian方法更适于无人机航拍电力线图像的增强操作.IMA方法不但运算速度快,而且能在大幅减弱航拍图像中复杂环境背景的同时增强电力线目标,从而有效提高图像的电力线目标检测识别率. A power line image photographed by UAV (unmanned aerial vehicle) has usually a complex background, wherein the thin power lines are so weak that the target lines detection rate is low. To solve this problem, an iterable multidirectional autocorrelation (IMA) approach is proposed to enhance image. Firstly, an effective filtering template is designed according to the local grey level distribution along longitudinal and lateral directions of a power line in a UAV aerial image, and the results of the directional filtering are used to perform an autocorrelational enhancement. The autocorrelational enhancement can be performed iteratively to get a satisfactory image enhancement result. Image enhancement results of IMA are compared with those of Canny, Hessian approaches in a series of experiments. Experiments results show that the proposed IMA approach is more suitable for UAV aerial image enhancement than Canny and Hessian approaches. The IMA approach is fast, and it can weaken complex background in aerial image dramatically while enhancing power line targets, which effectively improves recognition rate of power line targets in images.
出处 《机器人》 EI CSCD 北大核心 2015年第6期738-747,共10页 Robot
基金 国家自然科学基金(61473282 61203340 61305121)
关键词 航拍电力线图像 可迭代多向自相关 图像增强 灰度分布 滤波 aerial power line image iterable multidirectional autocorrelation (IMA) image enhancement grey level distribution filtering
  • 相关文献

参考文献26

  • 1Golightly I, Jones D. Visual control of an unmanned aerial vehi- cle for power line inspection[C]//12th International Conference on Advanced Robotics. Piscataway, USA: IEEE, 2005: 288- 295.
  • 2Yan G J, Li C Y, Zhou G Q, et al. Automatic extraction of pow- er lines from aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 387-391.
  • 3Li Z R, Liu Y, Hayward R, et al. Knowledge-based power line detection for UAV surveillance and inspection systems [C]///EEE 23rd International Conference on Image and Vision Computing. Piscataway, USA: IEEE, 2008: 1-6.
  • 4赵利坡,范慧杰,朱琳琳,唐延东.面向巡线无人机高压线实时检测与识别算法[J].小型微型计算机系统,2012,33(4):882-886. 被引量:15
  • 5Cao W R, Zhu L L, Han J D, et al. High voltage trans- mission line detection for UAV based routing inspection[C] //IEEE/ASME International Conference on Advanced Intelli- gent Mechatronics. Piscataway, USA: rEEE, 2013: 554-558.
  • 6Zhu L L, Cao W R, Han J D, et al. A double-side filter based power line recognition method for UAV vision system[C]//IEEE International Conference on Robotics and Biomimetics. Piscat- away, USA: IEEE, 2013: 2655-2660.
  • 7Frangi A, Niessen W, Vincken K, et al. Multiscale vessel en- hancement filtering[M]//Wells W, Colchester A, Delp S. Med- ical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer-Verlag, 1998: 130-137.
  • 8李光明,田捷,赵明昌,何晖光.基于Hessian矩阵的中心路径提取算法[J].软件学报,2003,14(12):2074-2081. 被引量:29
  • 9许燕,胡广书,商丽华,耿进朝.基于Hessian矩阵的冠状动脉中心线的跟踪算法[J].清华大学学报(自然科学版),2007,47(6):889-892. 被引量:13
  • 10Mirhassani S M, Hosseini M M, Behrad A. Improvement of Hessian based vessel segmentation using two stage threshold and morphological image recovering[C]//International Confer- ence on Innovations in Information Technology. Piscataway, USA: IEEE, 2009: 50-54.

二级参考文献72

  • 1张军英,梁军利.基于脉冲耦合神经网络的图像融合[J].计算机仿真,2004,21(4):102-104. 被引量:18
  • 2[1]Vilanova A, Konig A, Groller E. VirEn: A virtual endoscopy system. Machine Graphics & Vision, 1999,8(3):469~487.
  • 3[2]He TS, Hong LC, Chen DQ, Liang ZR. Reliable path for virtual endoscopy: Ensuring complete examination of human organs. IEEE Transactions on Visualization and Computer Graphics, 2001,7(4):333~342.
  • 4[3]Hong LC, Muraki S, Kaufman A, Bartz D, He TS. Virtual voyage: Interactive navigation in the human colon. In: Turner W, ed. Proceedings of the SIGGRAPH'97. Los Angeles: ACM Press, 1997. 27~34.
  • 5[4]Pavlidis T. A thinning algorithm for discrete binary images. Computer Graphics and Image Processing, 1980,13(2):142~157.
  • 6[5]Wan M, Dachille F, Kaufman A. Distance-Field based skeletons for virtual navigation. In: Proceedings of the IEEE Visualization 2001. 2001. 239~246.
  • 7[6]Bitter I, Kaufman AE, Sato M. Penalized-Distance volumetric skeleton algorithm. IEEE Transactions on Visualization and Computer Graphics, 2001,7(3):195~206.
  • 8[7]Saito T, Toriwaki JI. New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition, 1994,27(11):1551~1565.
  • 9[8]Furst JD, Pizer SM. Marching optimal-parameter ridges: An algorithm to extract shape loci in 3D images. In: Wells WM, Colchester A, Delp S, eds. Proceedings of the MICCAI'98 (Medical Image Computing and Computer-Assisted Intervention). New York: Springer-Verlag, 1998. 780~787.
  • 10[9]Aylward SR, Bullitt E. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transactions on Medical Imaging, 2002,21(2):61~75.

共引文献273

同被引文献91

引证文献9

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部