期刊文献+

基于时延反馈精确线性化的QZS系统混沌反控制 被引量:2

Chaotification of QZS System Based on Exact Linearization and Time-delay Feedback Method
下载PDF
导出
摘要 针对准零刚度隔振系统(QZS)混沌反控制缺乏有效手段的难题,研究了基于微分几何理论和时延反馈控制实现QZS混沌化方法.讨论了QZS系统实现精确线性化的条件,及时延反馈控制器的设计,并对控制器各个参数对系统动力学特性的影响进行了讨论,研究表明,该方法能够在小能量情况下实现QZS系统的大范围混沌化. In order to realize the chaotification of the QZS(quasi-zero-stiffness system), this paper presents a chaotification method for QZS system based on differential-geometry and time-delayed control method. The conditions of exact linearization of the QZS system and the design of controller are discussed. Furthermore, the feasibility and effectiveness of this method is verified by numerical simulations. The simulation results show that the time-delayed control method based on differential-geometry theory holds many favorable aspects, including using tiny control energy and chaotifying across a large range of parameter domain.
出处 《武汉理工大学学报(交通科学与工程版)》 2015年第6期1212-1214,1220,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金青年科学基金项目(批准号:51509253) 国家自然科学基金面上项目(批准号:51179197)资助
关键词 准零刚度隔振系统 时延反馈控制 精确线性化 QZS system time-delayed feedback control exact linearization
  • 相关文献

参考文献9

  • 1LOU Jingjun, ZHU Shijian, HE Lin, et al. Applica- tion of Chaos Method to Line Spectra Reduction[J]. Journal of Sound and Vibration, 2005,286 : 645-652.
  • 2杨庆超,何其伟,孙方旭.参数扰动广义混沌同步化线谱控制技术研究[J].振动与冲击,2014,33(21):21-25. 被引量:2
  • 3张振海,朱石坚,楼京俊.基于离散混沌化方法的线谱控制技术研究[J].振动与冲击,2010,29(10):50-52. 被引量:6
  • 4张建卓,董申,李旦.基于正负刚度并联的新型隔振系统研究[J].纳米技术与精密工程,2004,2(4):314-318. 被引量:49
  • 5CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [ J ]. journal of Sound and Vibration,2007,301:678-689.
  • 6IVANA K, MICHAEl. J B, TIMOTHY P W. A study of a nonlinear vibration isolator with a quasi-ze- ro stiffness characteristic [J]. Journal of Sound and Vibration. 2008,315:700-711.
  • 7卢强,梅生伟,孙元章.电力系统非线性控制[M].北京.清华大学出版社.2008.
  • 8ISIDORI A. Nonlinear control systems[M]. 3 rd ed. Berlin: Spring-Verlag; 1995.
  • 9陈关荣,汪小帆.动力系统的混沌化理论、方法与应用[M].上海:上海交通大学出版社,2006.

二级参考文献16

  • 1吴成军.工程振动与控制[M].西安:西安交通大学出版社,2008.
  • 2[1]张应会,刘得航,王得成.弹簧手册[M].北京:机械工业出版社,1997.
  • 3[2]Zhang Jianzhuo, Li Dan, Chen Mingjun, et al. An ultra-low frequency parallel connection nonlinear isolator for precision instruments [ J ]. Key Engineering Materials, 2004, 57( 258 ): 231-236.
  • 4Konishi K. Generating chaotic behavior in an oscillator driven by periodic forces [ J ]. Physics Letters A 320, 2003: 200 - 206.
  • 5Jiang R J, Zhu S J. Vibration isolation and chaotic vibration [ A]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference-I)ETC2005 [ C ]. Chicago: ASME Press, 2005 : 2375 - 2377.
  • 6Lou J J, Zhu S J, He L, et al. Application of chaos method to line spectra reduction [ J ]. Journal of Sound and Vibration, 2005,286:645 - 652.
  • 7Jiang R J,Zhu S J. Vibration isolation and chaotic vibration[C ]//Proceedings of the ASME International DesignEngineering Technical Conferences and Computers andInformation in Engineering Conference 2005,Chicago, ASMEPress, 2005:2375 -2377.
  • 8Lou J J,Zhu S J,He L, et al. Application of chaos method toline spectra reduction [ J ]. Journal of Sound and Vibration,2005,286(3) :645 -652.
  • 9YU Xiang,ZHU Shi-jian, LIU Shu-yong. A new method forline spectra reduction similar to generalized synchronization ofchaos [ J ]. Journal of Sound and Vibration, 2007, 306 : 835-848.
  • 10张振海,朱石坚,楼京俊.基于离散混沌化方法的线谱控制技术研究[J].振动与冲击,2010,29(10):50-52. 被引量:6

共引文献96

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部