期刊文献+

混合蛙跳优化决策面的LSB±k隐写算法

Improved LSB±k Steganography Based on Decision Surface Optimized by SFLA
下载PDF
导出
摘要 针对现有智能优化改进隐写不能对高维特征同时进行优化的问题,提出了一种混合蛙跳优化决策面的改进LSB±k隐写算法(记为SFLA-LSB±k).不同于其他优化改进隐写中尽可能减少图像载密前后某种特征变化的策略,在SFLA-LSB±k中,通过优化载密图像的特征变化,使载密图像特征变化方向随机化,导致分类器无法训练出一个能对载体与载密图像进行分类的决策面,从而达到抵抗分析的目的.实验结果表明,与标准的LSB±k隐写和相关PSO优化改进LSB±k隐写相比,SFLA-LSB±k有效提高了LSB±k的安全性,特别是当k取1时,该算法针对78维特征隐写分析的AUC值可下降到0.563 7. Most improved steganographies based on intelligent optimization cannot realize high-dimensional features optimization simultaneously. To solve the problem, this paper proposes an improved LSB±k steganography (denoted SFLA-LSB+k) based on SFLA to achieve an optimal decision surface. Different from the other improved steganographies that attempt to keep image features unchanged after data embedding as much as possible, the proposed method tries to randomly change feature directions of stego-image in the embedding process optimized by SFLA. Thus, it is difficult to find a decision surface to distinguish cover images from stego-images. Simulation indicates that, with the same em- bedding capacity, SFLA-LSB=hk demonstrates better performance in resisting steganMysis than the traditional LSB+k and the improved LSB+k optimized by PSO. Especially, theAUC value is reduced to 0.563 7 when k=l against steganalysis with 78-dimension features.
出处 《应用科学学报》 CAS CSCD 北大核心 2015年第6期663-670,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.61462046 No.61163062) 江西省教育厅科学技术研究项目基金(No.GJJ14559 No.GJJ13553) 江西省科技厅自然科学项目基金(No.20151BAB207026 No.20151BAB217012)资助
关键词 LSB±k隐写 混合蛙跳优化 决策面 隐写分析 LSB±k steganography, SFLA, decision surface, steganalysis
  • 相关文献

参考文献14

  • 1王朔中,张新鹏,张卫明.以数字图像为载体的隐写分析研究进展[J].计算机学报,2009,32(7):1247-1263. 被引量:77
  • 2Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3):920-935.
  • 3Fridrich J, Kodivsky J, Holub V. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information and Security, 2012, 7(3):868-882.
  • 4Sharp T. An implementation of key-based digital signal steganography[C]//the 4th International Workshop on Information Hiding. Pittsburgh, 2001, 2137:13-26.
  • 5Li X X, Wang J J. A steganographic method based upon JPEG and particle swarm optimization algorithm[J]. Information Sciences, 2007, 177(15):3099-3109.
  • 6Liu G J, Zhang Z. Improved LSB-matching steganography for preserving second-order statistics[J]. Journal of Multimedia, 2010, 5(5):458-463.
  • 7Guo Yanqing,Kong Xiangwei,You Xingang.SECURE STEGANOGRAPHY BASED ON BINARY PARTICLE SWARM OPTIMIZATION[J].Journal of Electronics(China),2009,26(2):285-288. 被引量:2
  • 8于丽芳,赵耀,倪蓉蓉.基于粒子群算法和改进PM1的JPEG图像中的安全密写方法[J].南京邮电大学学报(自然科学版),2009,29(3):49-53. 被引量:2
  • 9Ghasemi E, Shanbehzadeh J, Jamshid F. High capacity image steganography based on genetic algorithm and wavelet transform[J]. Intelligent Control and Innovative Computing, 2012, 110:395-404.
  • 10Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Sources Planning and Management, 2003, 129(3):210-225.

二级参考文献30

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部