期刊文献+

一类带比例时滞Fredholm型积分方程Legendre配置解法及收敛性分析

Legendre-Collocation Method and Convergence Analysis for a Kind of Fredholm Integral Equation with Proportional Delay
下载PDF
导出
摘要 本文利用Legendre配置方法探讨一类带比例时滞Fredholm型积分方程的数值解法.首先利用Gauss-Legendre求积公式将积分项进行离散,然后将Legendre多项式的零点取为离散化方程组的配置点,把积分方程转化为代数方程组后进行求解,并给出了数值求解格式和收敛性定理,最后列举若干数值例子以验证该方法的有效性与可靠性. In this paper, the Legendre-Collocation method is presented for numerically solving the Fredholm integral equation with proportional delay. First, taking some collocation points, the integral equation is translated into algebraic equation. By adopting the Gauss-Legendre integral formula, let the zeros of Legendre polynomials be the collocation points, the integral equation is discreted to algebraic equations. Secondly, the format of numerical solution and convergence theorem are obtained by the Legendre-Collocation method and some numerical examples are given to illustrate the accuracy and dependability of the method.
出处 《五邑大学学报(自然科学版)》 CAS 2015年第4期5-9,26,共6页 Journal of Wuyi University(Natural Science Edition)
基金 广东省自然科学基金资助项目(2015A030313643) 2014年广东省高等学校青年教师培养计划资助项目(syq2014002)
关键词 比例时滞 Fredholm型积分方程 Legendre配置解法 收敛性分析 proportional delay Fredholm integral equation Legendre-Collocation method convergence analysis
  • 相关文献

参考文献7

  • 1JERRI A J. Introduction to integral equations with application [M]. London: John Wiley &Sons, 1999.
  • 2YOUSEA S, RAZZAGHIB M. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations [J]. Mathematics and Computers in Simulation, 2005, 70(1): 1-8.
  • 3BRUNNER H. On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods [J]. SIAM Journal on Numerical Analysis, 1990, 27(1): 987-1000.
  • 4BULBUL B, SEZER M. Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients [J]. International Journal of Computer Mathematics, 2011, 88(3): 533-544.
  • 5CHEN Yanping, TANG Tao. Spectral methods for weakly singular Volterra integral equations with smooth solutions [J]. Journal of Computational and Applied Mathematics, 2009, 233(4): 938-950.
  • 6WANG Qisheng, WANG Keyan, CHEN Shaojun. Least squares approximation method for the solution of Volterra-Fredholm integral equations [J]. Journal of Computational and Applied Mathematics, 2014, 272: 141-147.
  • 7WANG Keyan, WANG Qisheng, GUAN Kaizhong. lterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation[J]. Applied Mathematics and Computation, 2013, 225: 631-637.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部