期刊文献+

一种快速的基于特征选择的跨领域情感分类方法

A fast cross-domain sentiment classification based on feature selection
下载PDF
导出
摘要 已有的跨领域情感分类方法多通过抽取公共特征空间或建立领域特定特征间的映射关系来消减领域间的差异性,由于不考虑特征情感区分力的差异,使得公共特征空间及特征映射的求解往往不准确。具有高区分力的特征对于文本情感分类具有重要的意义,但标记的缺失使得已有的特征选择方法难以应用。文章基于特征选择方法,提出一种快速的跨领域情感分类方法(cross-domain sentiment classification based on feature selection,CSFS),构建源领域特征与目标领域特征的词共现矩阵,基于该矩阵对目标领域特征的情感区分力进行评估,在目标领域中选择出其中具有高情感区分力的特征;再利用源领域信息计算目标领域特征的情感语义大小,从而构建目标领域分类器。实验结果表明,该方法在保证准确率的前提下,大大提高了跨领域分类的效率。 Many existing cross-domain sentiment classification methods reduce the distribution difference between domains by extracting a common sub-space or establishing the mapping relationship between domain specific features, and do not consider the difference of features' sentiment orientation. Some features with lower sentiment orientation will influence the result of sub-space and mapping relationship. Features with higher sentiment orientation are important for sentiment classification. However, it is difficult to apply existing feature selection methods on unlabeled data. In this paper, a fast cross-domain sentiment classification based on feature selection(CSFS) is proposed. Firstly, the word co-occurrence matrix between the source features and target features is constructed, the sentiment orientation of target domain features is evaluated, and then words with higher sentiment orientation are selected as the feature space of target domain. Secondly, the features in target domain are labeled using the source features, and then a classifier is created based on the labeled features. The empirical result shows that CSFS highly improves the time efficiency of cross-domain classification while maintaining the classification accuracy.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第11期1488-1492,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家高技术研究发展计划(863计划)资助项目(2012AA011005) 国家自然科学基金资助项目(61273292 61305063) 安徽省自然科学基金资助项目(1208085QF122)
关键词 跨领域 特征选择 情感分类 cross-domain feature selection sentiment classification
  • 相关文献

参考文献15

  • 1Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning [C]//Proceedings of Empirical Methods in Natural Language Processing. Syd- ney, Australia, 2006 : 120- 128.
  • 2Blitzer J, Dredze M, Pereira F. BiograPhies, Bollywood, boom-boxes and blenders domain adaptation for sentiment classification[C]//Proceedings of the 45th Association for Computational IAnguistics, Prague Czech Republic, 2007: 440-447.
  • 3Pan S J, Ni X C, Sun J T, et al. Cross-domain sentiment classification via spectral feature alignment[C]//Proceed- ings of the 19th International World Wide Web Conference. Raleigh, North Carolina, USA: ACM, 2010 : 751 - 760.
  • 4Bollegala D,Weir D, Carroll J. Cross domain sentiment clas- sification using a sentiment sensitive thesaurus [J]. IEEE Transactions on Knowledge and Data Engineering, 2013,25 (8) : 1719-1731.
  • 5Liu K,Zhao J. Cross-domain sentiment classification using a two-stage method[C]//Proceedings of the 18th ACM con- ference on Information and Knowledge Management, Hong Kong, China, 2009 :1717- 1720.
  • 6欧倩倩,张玉红,胡学钢.基于实例重构的多领域快速适应方法[J].合肥工业大学学报(自然科学版),2014,37(7):794-797. 被引量:2
  • 7胡学钢,方玉成,张玉红.基于Logistic回归分析的直推式迁移学习[J].合肥工业大学学报(自然科学版),2010,33(12):1797-1801. 被引量:4
  • 8Xia R, Zong C O. A pos-based ensemble model for cross-do- main sentiment classification[C]//Proceedings of the 5th International Joint Conference on Natural Language Pro- cessing, Chiang Mai, Thailand, 2011: 614- 622.
  • 9Shi Y, Sha F. Information-theoretical learning of discrimina- tive clusters for unsupervised domain adaptation[C]//Pro ceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012:1079- 1086.
  • 10Arnold A, Nallapati R, Cohen W. A comparative study of methods for transductive transfer learning[C]//Proceed- ings of the Seventh IEEE International Conference on Data Miping Workshops, Washington, DC, USA, 2007 :77 - 82.

二级参考文献48

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Pan S J,Yang Qiang.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009:513-518.
  • 3Pan S J,Kwok J T,Yang Qiang.Transfer learning via dimensionality reduction[C] //Proceedings of the 23rd AAAI Conference on Artificial Intelligence,Chicago,Illinois,USA,July,2008:677-682.
  • 4Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:domain adaptation for sentiment classification[C] //Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,Prague,Czech Republic,2007:432-439.
  • 5Caruana R.Multitask learning[J].Machine Learning,1997,28(1):41-75.
  • 6Raina R,Battle A,Lee H,et al.Self-taught learning:Transfer learning from unlabeled data[C] //Proceedings of the 24th International Conference on Machine Learning,Corvalis,Oregon,USA,June,2007:759-766.
  • 7Daumé III H,Marcu D.Domain adaptation for statistical classifiers[J].Journal of Artificial Intelligence Research,2006,26:101-126.
  • 8Zadrozny B.Learning and evaluating classifiers under sample selection bias[C] //Proceedings of the 21st International Conference on Machine Learning,Banff,Alberta,Canada,July,2004:114-121.
  • 9Shimodaira H.Improving predictive inference under covariate shift by weighting the log-likelihood function[J].Journal of Statistical Planning and Inference,2000:90:227-244.
  • 10Wang Zheng,Song Yangqiu,Zhang Changshui.Transferred dimensionality reduction[C] //Machine Learning and Knowledge Discovery in Databases,European Conference,ECML/PKDD,2008,Antwerp,Belgium,September,2008:550-565.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部