期刊文献+

多维随机不确定性下的船舶多学科稳健设计优化研究 被引量:7

Ship Multidisciplinary Robust Design Optimization under Multidimensional Stochastic Uncertainties
下载PDF
导出
摘要 通常船舶多学科设计优化仅考虑确定性的影响,忽视设计中不确定性因素的存在,显然优化结果无法真正保障船型方案的可行性和航行性能的优良性。目前,不确定性船舶多学科设计优化主要集中在一维不确定性分析。为了得到船舶设计优化的最优方案,以多维不确定性下的多学科稳健设计优化问题为例,通过分析考虑随机不确定性因素的均匀分布和正态分布并存分布状况,提出了一种新的以Legendre polynomials和Hermite polynomials多项式为基础的多维多项式混沌方法,并以海洋平台支持船为对象构建多维不确定性量化模型。通过对多维随机不确定性因素对船舶优化方案的影响分析完成了船舶多学科稳健设计优化研究,有效地减少和避免船舶设计优化方案失效的可能性。 Generally the multidisciplinary design optimization in ship design only considers the impact of certainties with ignoring the existence of uncertainties in the design. The results of the optimization obviously can't really guarantee the feasibility of ship hull and excellence of sailing performance. Currently, uncertainty multidisciplinary design optimization of ship focuses on one dimension of uncertainty analysis. To obtain the optimal solution of ship design, the problem of multidisciplinary robust design optimization under multi-dimensional uncertainties is studied in the paper by analyzing and considering uniform distribution and normal distribution of random uncertainties. It deduces a new multi-dimensional polynomial chaos approach based on Legendre polyomials and Hermite polynomials. It is established the mathematical models of multi-dimensional uncertainty quantification while considering offshore supply vessel as the research object. By analyzing the influence of multi-dimensional stochastic uncertainties to the ship design optimization, the research of ship robust multidiseiplinary design optimization is completed. The possibility offailure in ship design optimization is effectively reduced and avoided.
出处 《船舶工程》 北大核心 2015年第11期61-66,共6页 Ship Engineering
基金 国家自然科学基金资助项目(51509114) 江苏省基础研究计划(自然科学基金)资助项目(BK2012696 BK2009722) 江苏省高校自然科学研究计划项目(09KJD580004)
关键词 随机不确定性 多学科设计优化 多维多项式混沌方法 不确定性量化 stochastic uncertainty multidisciplinary design optimization muhi-dimensional polynomialchaos uncertainty quantification
  • 相关文献

参考文献12

  • 1Klasen, Emanuel. Confidence of Success in Multi-criteriaOptimization of Multidisciplinary Ship Design Models[D].Wginia: The Department of Aerospace and OceanEngineering, the Virginia Polytechnic Institute and StateUniversity, 2005.
  • 2Nathan Andrew Good. Multi-objective Design OptimizationConsidering Uncertainty in a Multidisciplinary ShipSynthesis Model[D]. Viigmia: Faculty of the Vh'giniaPolytechnic Institute and State University, 2006.
  • 3J. M. Vasconcellos, H. B. Moraes. Multi-objectiveOptimization under Uncertainty for Catamaran PreliminaryDesign[C]//The 11th International Conference on Fast SeaTransportation, 2011.
  • 4Shari E. Hannapel. Development of MultidisciplinaryDesign Optimization Algorithms for Ship Design underUncertainty [D]. Michigan: University of Michigan, 2012.
  • 5Christopher Gregory Hart. Multidisciplinary DesignOptimization of Complex Engineering Systems for CostAssessment under Uncertainty [D]. Michigan: Universityof Michigan, 2010.
  • 6贺伟,DIEZ Matteo,CAMPANA Emilio Fortunato,STERN Frederick,邹早建.A one-dimensional polynomial chaos method in CFD–Based uncertainty quantification for ship hydrodynamic performance[J].Journal of Hydrodynamics,2013,25(5):655-662. 被引量:5
  • 7Jianguang Fang, Yunkai Gao,Guangyong Sun, et alMulti-objective Robust Design Optimization of FatigueLife for a Truck Cab[J]_ Reliability Engineering and SystemSafety, 2015,135: 1-8.
  • 8MOUSAVIRAAD S.M., HE W” DIEZ M,et al.Framework for Convergence and Validation of Stochastic^ Uncertainty Quantification and Relationship toDeterministic Verification and Validation[J]. InternationalJournal for Uncertainty Quantification, 2013, 3(5):371-395.
  • 9Najm H.N. Uncertainty Quantification and PolynomialChaos Techniques in Cpmputational Fluid Dynamics[J].Annual Review of Fluid Mechanics’ 2009,41(1): 35-52.
  • 10李冬琴,蒋志勇,杨永祥.基于自适应加权的船舶多目标协同优化[J].中国造船,2012,53(4):75-83. 被引量:7

二级参考文献32

  • 1孙德山,吴今培,侯振挺,肖健华.单参数支持向量回归算法[J].系统工程学报,2005,20(1):109-112. 被引量:12
  • 2KODIYALAM S, SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary design optimization-some metheds, framework requirements and application to vehicle design[J]. Int.J.Vehicle Design (Special Issue) , 2001, 50 (3) :1101-1120.
  • 3BROWN A J. Multi-objective optimization in naval ship concept design[C]//accepted for publication Marine Systems and Technology (MAST) 2010 Conference, Rome, Italy, 9-11 November, 2010.
  • 4HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001,2 (4) :431-452.
  • 5McDONALD D B, GRANTHAM W J, TABOR W L,et al. Global and local optimization using radial basis function response surface models[J]. Applied Mathematical Modelling,2007,31 (10) :2095-2110.
  • 6SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39 (12) :2233-2241.
  • 7SMOLA A J, SCHOLKOPF B.A tutorial on support vector regression [J]. Statistics and Computing,, 2004, 14:199-222.
  • 8VAPNIK V N. Statistical learning theory [M]. Wiley, New York, 1998.
  • 9MANGASARIAN O L,MUSICANT D R. Lagrangian support vector machines [J]. Journal of Machine Learning Research, 2001 (1) :161-177.
  • 10SOBIESCZANSKI-SOBIESKI J, HAFTKA R T. Multidisciplinary aerospace design optimization: Survey of recent developments[C]//Proc.34th Aerospace Sciences Meeting and Exhibit. Reno, NV, 1996.

共引文献16

同被引文献40

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部