期刊文献+

基于粗糙集的多标记专属特征学习算法 被引量:10

Multi-label Learning with Label-specific Features Based on Rough Sets
下载PDF
导出
摘要 基于专属特征的多标记学习算法使用K-Means聚类算法对标记的正反样例进行聚类,进而构造每个标记的专属特征.但该方法对标记和专属特征之间的相关性缺乏理论性地探究,而且K-Means聚类方法仅仅局限于数值属性数据聚类.对此,一个基于粗糙集的多标记专属特征学习算法(R-LIFT Algorithm)被提出,其使用粗糙集的约简算法来计算每个标记的专属特征.该算法选取的专属特征是原始特征,具有直观意义,并且能够从理论上保证专属特征与标记之间具有较强的相关性.实验表明,R-LIFT算法能够有效地学习专属特征,并进一步提高多标记学习算法的性能. Multi-label learning algorithm with label-specific features performs clustering analysis on positive and negative instances of each label, and then constructs label-specific features. However,the algorithm cannot guarantee in theory the relevance between label- specific features and labels. And K-Means clustering method is only limited to the numeric data. In this paper, a multi-label learning al- gorithm with label-specific features based on rough sets named R-LIPT Algorithm is proposed, which uses the attribute reduct algo- rithm in rough set theory to compute specific features of each label. The label-specific features constructed by R-LIPT algorithm are a part of original features, which have intuitive significance and easy to be understood. Moreover,R-LIFT algorithm can theoretically en- sure a strong correlation between the label-specific features and labels. Experiments on real-life data sets show that the proposed ap- proach can effective find the label-specific features and,moreover,improve the performance of multi-label learning.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第12期2730-2734,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272095 71031006 61175067 61303107)资助 山西省自然科学基金项目(2012061015)资助 山西省回国留学人员科研项目(2013-014)资助
关键词 多标记学习 专属特征 粗糙集 约简 multi-label learning label-specific feature rough sets attribute reduct
  • 相关文献

参考文献31

  • 1Ueda N, Saito K. Parametric mixture models for multiqabel text [ C ]. In: Becker S. , Thrun S. and Obermayer K. , eds. Advances in Neural Informations Processing Systems 15 ,MIT Press ,Cambridge, MA ,2003:721-728.
  • 2Kazawa H, Izumitani T,Taira H, et al. Maximal margin labeling for multi-topic text categorization [ C ]. In: Saul L. K. , Weiss Y. , Bot- tou L. , eds. Advances in Neural Information Processing Systems 17, MIT Process, Cambridge, MA ,2005:649-656.
  • 3Schapire R R, Singer Y. Boostexter:A boosting-based system for text categorization ~ J ]. Machine Learning ,2000,39 ( 2-3 ) : 135-168.
  • 4Zhang M, Zhou Z. Multi-label neural networks with applications to functional genomics and text categorization ~ J]. 1EEE Transactions on Knowledge and Data Engineering,2006,18 ( 10 ) : 1338 -1351.
  • 5Boutell M R, Luo J, Shen X, et al. Learning multi-label scene classi- fication ~ J]. Pattern Recognition ,2004,37 (9) : 1757-1771.
  • 6Bi W, Kwok J. Efficient multi-label classification with many labels [ C]. In:Proceedings of the 30th International Conference on Ma- chine Learning, Atlanta, GA,2013:405 -413.
  • 7Kang F, Jin R, Sukthankar R. Correlated label propagation with ap- plication to multi-label learning [ C ]. Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. NY ,2006 : 1719-1726.
  • 8Qi G J,Hua X S,Rui Y,et al. Correlative multi-label video annota- tion[ C ]. Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 2007 : 17 -26.
  • 9Elissecff A, Weston J. A kernel method for multi-labelled classifiea- tion[ C ]. In: Advances in Neural Information Processing Systems 14 ,Cambridge ,MA,M1T Press,2002:681-687.
  • 10Barutcuoglu Z, Schapire R E,Troyanskaya O G. Hierarchical multi- label prediction of gene function[ J]. Bioinformatics ,2006,22 (7) : 830-836.

同被引文献43

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部