期刊文献+

基于MapReduce的高阶矩阵乘法分布式并行算法研究

Distributed Parallel Algorithm Based on MapReduce for High-order Matrix Multiplication
下载PDF
导出
摘要 高阶矩阵的存储和处理在信息、经济、生物等学科领域都有十分重要的应用,但是由于单节点计算机CPU、内存等资源的限制,导致了对高阶矩阵的处理存在一定的困难.在研究云计算平台Hadoop及其核心组件MapReduce的基础上,研究实现了处理高阶矩阵乘法的通用并行算法(内积法),在此基础上,对内积法进行了改进,提出一种基于缓存的分布式并行算法(缓存法),通过实验仿真表明,缓存法相比内积法执行效率更高,不仅适合处理高阶稀疏矩阵,而且可以处理高阶稠密矩阵,并且在并行效果上接近理论线性加速比. High-order matrix storage and processing plays an important role in the field of the information, economic, biological and so on, but due to the limitation of resources such as CPU and memory in the single node computer,it is difficult to deal with high-order matrix. Based on the study of cloud computing platform Hadoop and its core component MapReduce, this paper proposes two distribu- ted parallel algorithms to handle high-order matrix, the simulation show that the modified algorithm ( Cache-based algorithm ) is more effective than traditional algorithm ( Direct algorithm), and it is suitable for processing not only high-order sparse matrix but also dense matrix. The algorithms have high speedup which is close to the linear speedup in the theory.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第12期2789-2793,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金青年项目(61305087 61402425)资助 国家自然科学基金面上项目(61272470)资助 中国博士后科学基金项目(2014M562086)资助
关键词 MAPREDUCE 高阶矩阵 云计算 MapReduce high-order matrix cloud computing
  • 相关文献

参考文献3

二级参考文献36

  • 1Dean J, Ghemawat G. Mapreduce: simplified data processing on large clusters[ J]. Communications of the ACM ,2008 : 107 - 113.
  • 2White T. Hadoop :The Definitive Guide[ M ]. 2nd ed. O' Reilly Media, 2010.
  • 3Zhao Weizhong, Ma Huifang, He Qing. Parallel k-means clustering based on mapreduce[ C]//Proceedings of the 1st International Conference on Cloud Computing, CloudCom ' 09, Berlin : Springer-Verlag, 2009 : 674 - 679.
  • 4Stupar A, Michel S, Schenkel R. Rankreduce-processing k-nearest neigh- bors queries on top of mapreduce [ C ]//Proceedings of the 8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS- IR' 10) ,2010.
  • 5Catanzaro B ,Sundaram N ,Keutzer K. Fast support vector machine train- ing and classification on graphics processors [ C ]//Proceedings of the 25th international conference on Machine learning, ICML' 08, New York, NY, USA ,2008.
  • 6Das A S, Datar M, Garg A, et al. Google news personalization:scalable online collaborative filtering[ C ]//Proceedings of the 16th internation- al conference on World Wide Web, WWW' 07, New York, NY, USA, 2007 : 271 - 280.
  • 7Liu Chao, Yang Hungchih, Fan Jinliang, et al. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce [ C ]/Proceedings of the 19th international conference on World wide web, WWW' 10, New York, NY, USA,2010:681 - 690.
  • 8http ://www. acrc. bris. ac. uk.
  • 9Hadoop W-K [EB/OL]. http;//en, wikipedia org/wiki/Hado- op,2012-02-21.
  • 10Nutch W-K [EB/OL]. http://ca, wikipedia, org/wiki/Nutch, 2012-02-21.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部