期刊文献+

铝栅化学机械抛光工艺 被引量:1

Chemical mechanical polishing process of aluminum grid
下载PDF
导出
摘要 探讨了抛光液组成和机械抛光工艺参数(包括抛光压力、转速、抛光液流速和抛光时间)对铝栅化学机械抛光过程中铝的去除速率的影响,确定抛光液的组成为:氧化剂H_2O_2 1.0%(体积分数,下同),螯合剂FA/O II 0.4%,非离子表面活性剂FA/O I 2.0%,纳米硅溶胶磨料12%,pH 10。粗抛工艺参数为:抛光压力3.0 psi,转速50 r/min,抛光液流速250 m L/min,抛光时间240 s。精抛工艺参数为:抛光压力2.0 psi,转速45 r/min,抛光液流速150 m L/min,抛光时间240 s。粗抛时铝的去除速率为330 nm/min,精抛时铝的去除速率为210 nm/min。通过2种抛光工艺相结合,铝栅表面粗糙度可达13.26 nm。 The influence of composition of polishing solution and mechanical polishing process parameters, including polishing pressure, rotation speed, polishing solution flow rate, and polishing time, on aluminum removal rate during aluminum grid chemical mechanical polishing was studied. The composition of polishing solution was determined as follows: H2O2 as oxidant 1.0vol%, chelating agent FA/O II 0.4%, nonionic surfactant FA/O 12.0%, nano-silica sol abrasive 12%, and pH 10. For rough polishing, the optimized process parameters are: polishing pressure 3.0 psi, rotation speed 50 r/min, polishing solution flow rate 250 mL/min, and polishing time 240 s. For fine polishing, the optimized process parameters are: polishing pressure 2.0 psi, rotation speed 45 r/min, polishing solution flow rate 150 mL/min, and polishing time 240 s. The aluminum removal rate is 330 nm/min during rough polishing and 210 nm/min during fine polishing. By combining the two polishing processes, the surface roughness of aluminum grid reaches 13.26 nm.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2015年第21期1232-1237,共6页 Electroplating & Finishing
基金 国家中长期科技发展规划02科技重大专项资助项目(2009ZX02308) 河北省教育厅基金(QN2014208)
关键词 铝栅 化学机械抛光 配方 磨料 去除速率 表面粗糙度 aluminum grid chemical mechanical polishing formulation abrasive removal rate surface roughness
  • 相关文献

参考文献6

  • 1HSIEN Y H, HSU H K, TSAI T C, et al. Process development of high-k metal gate aluminum CMP at 28 nm technology node [J], Microelectronic Engineering, 2012, 92: 19-23.
  • 2HUANG R P, TSAI T C, LIN W, et al. Investigation of aluminum film properties and microstructure for replacement metal gate application [J]. Microelectronic Engineering, 2013, 106: 56-62.
  • 3HSU H K, TSAI T C, HSU C W, et al. Defect reduction of replacement metal gate aluminum chemical mechanical planarization at 28 nm technology node [J]. Microelectronic Engineering, 2013, 112:121 - 125.
  • 4韩丽丽,刘玉岭,牛新环.碱性条件下铝CMP的机理分析及实验优化[J].微纳电子技术,2012,49(4):280-284. 被引量:8
  • 5韩丽丽,刘玉岭,牛新环,王如,王辰伟.ULSI铝布线化学机械抛光研究[J].微电子学,2012,42(4):576-579. 被引量:2
  • 6PIDAPARTI R M, PATEL R K. Investigation of a single pit/defect evolution during the corrosion process [J]. Corrosion Science. 2010, 52 (9): 3 150-3153.

二级参考文献14

共引文献8

同被引文献8

  • 1MISTRY K,ALLEN C,AUTH C,et al.A45 nm logic technology with high-k+metal gate transistors,strained silicon,9 Cu interconnect layers,193 nm dry patterning,and100%Pb-free packaging[C]//Proceedings of IEEE International Electron Devices Meeting.Washington,DC,USA.2007:247-250.
  • 2HSU H K,TSAI T C,HSU C W,et al.Defect reduction of replacement metal gate aluminum chemical mechanical planarization at 28 nm technology node[J].Microelectronic Engineering,2013,112:121-125.
  • 3HUANG R P,TSAI T C,LIN W,et al.Investigation of aluminum film properties and microstructure for replacement metal gate application[J].Microelectronic Engineering,2013,106:56-62.
  • 4HSIEN Y H,HSU H K,TSAI T C,et al.Process development of high-k metal gate aluminum CMP at 28 nm technology node[J].Microelectronic Engineering,2012,92:19-23.
  • 5WANG C,LIU Y,TIAN J,et al.A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal[J].Microelectronic Engineering,2012,98:29-33.
  • 6韩丽丽,刘玉岭,牛新环.碱性条件下铝CMP的机理分析及实验优化[J].微纳电子技术,2012,49(4):280-284. 被引量:8
  • 7周荣明,严惠根.铝和铝合金碱性化学抛光液及工艺的研究[J].上海大学学报(自然科学版),2000,6(4):371-374. 被引量:7
  • 8冯翠月,张文倩,刘玉岭.铝栅去除速率控制机理[J].微纳电子技术,2016,53(2):129-134. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部