期刊文献+

基于超磁致伸缩材料的快速制动执行器的设计

Design of Speedy Braking Actuator Based on Giant Magnetostrictive Material
下载PDF
导出
摘要 为有效解决制动执行器快速运动和高精度定位的矛盾,采用超磁致伸缩执行器来操纵制动机构,以提高制动系统的响应速度。在分析快速制动器的设计要求及其执行器的原理和可行性的基础上,进行了快速制动执行器总体方案设计和主要部件设计。根据制动所需的位移量和制动力,给出了GMM棒的长度和直径计算方法。由压磁方程结合快速制动要求,建立了螺管线圈的匝数与励磁电流的乘积与执行器输出位移量的关系,避免了直接求解激励磁场强度的困难。与此同时还探讨了线圈匝数和电流选择的依据,推导了位移放大机构尺寸的计算公式。最后进行了实验验证,结果表明B-GMA的工作特性能满足快速制动的要求。 To effectively solve the contradiction between the quick movement and high-precision positioning of braking actuator, giant magnetostrictive actuator ( GMA) is adopted to operate braking mechanism for increasing the response speed of brake system. The overall scheme and the component structure of speedy braking actuator are designed based on the analysis on the design requirements of speedy brake and the principle and feasibility of its ac-tuator. According to the desired actuator displacement and braking force, the calculation method for the length and diameter of GMM bar is given. The relationship between actuator output displacement and the product of solenoid coil turns and excitation current is established by piezomagnetic equation combined with the requirements of speedy braking, avoiding the difficulty of direct calculation of excitation magnetic field intensity. In addition, the basis for selecting coil turns and excitation current is discussed and the calculation formulae for the sizes of displacement mag-nification mechanism are derived. Finally a verification test is conducted with a result indicating that the characteris-tics of B-GMA meet the requirements of speedy braking.
出处 《汽车工程》 EI CSCD 北大核心 2015年第11期1307-1313,1327,共8页 Automotive Engineering
基金 国家自然科学基金(61074143) 浙江科技学院学科交叉预研专项重点项目(2012JC01Z) 浙江省自然科学基金(Y14E050016)资助
关键词 快速制动执行器 超磁致伸缩材料 励磁线圈 柔性铰链 位移放大机构 speedy braking actuator giant magnetostrictive material excitation coil flexible hinge displacement magnification mechanism
  • 相关文献

参考文献13

  • 1丁斌,黄伟明,杨新文,周世民.飞机全电刹车系统的机电作动机构[J].航空制造技术,2006,49(1):36-39. 被引量:5
  • 2郭新贵,李从心,阮雪榆.采用线性加减速伺服系统的快速准确定位方法[J].机械工程学报,2003,39(7):74-78. 被引量:20
  • 3Timo T Vekara, Jarl-Thure Eriksson, Juha T Tanttu. Dynamic Mod- el of an Electromagnetic Massive Core Brake Actuator [ J ]. 1EEE Transactions on Magnetics, 1996,32 ( 3 ) : 1970-1974.
  • 4Michael Gogola, Michael Goldfarb. Design of a PZT-Actuated Pro- portional Drum Brake [ J ]. IEEE/ASME Transactions on Mecha- tronics, 1999,4 (4) :409-416.
  • 5Takehito K, Junji F, Kunihiko O. Development of Isokinetic Exer- cise Machine Using ER Brake[ C]. Proceedings of the 2003 IEEE Conference on Robotics & Automation Taipei, Taiwan,2003:214- 219.
  • 6Yuan Q H, Perry Y L. Energy-Saving Control of an Unstable Valve with a MR Brake [ C 1. 2005 American Control Conference. Port- land, OR, USA,2005:4375-4380.
  • 7Katsushi F, Makoto H, Naoki K. One-way Brake Mechanism U- sing Piezoelectric Actuator[ CI. Proceedings of the IEEE Interna- tional Conference on Mechatronics & Automation Niagara Falls, Canada,2005 : 1235-1240.
  • 8Tar A J, Idar P, Jens K, et al . Gain-Scheduled Wheel Slip Con- trol in Automotive Brake Systems [ J ]. IEEE Transactions on Con-trol Systems Technology,2003,11 (6) :799-811.
  • 9Li R Y, Norbert F, Hermann W. Investigation of Power Supplies for a Piezoelectric Brake Actuator in Aircrafts [ C ]. 2006 IEEE, IPEMC 2006.
  • 10Goran Engdahl. Handbook of Giant Magnetostrictive Materials[ M ]. Sa Diego : Academic Press ,2000.

二级参考文献18

  • 1余佩琼,梅德庆,陈子辰,傅龙珠.超磁致伸缩微致动器结构优化与静态特性试验[J].农业机械学报,2005,36(7):114-117. 被引量:3
  • 2李明范,项占琴,吕福在.超磁致伸缩换能器磁路设计及优化[J].浙江大学学报(工学版),2006,40(2):192-196. 被引量:22
  • 3Yajima H, Wakiwaka H. Design of linear DC motor for high-speed positioning. Sensors and Actuators, 2000,81(1-3): 281-284.
  • 4Steven Ashley. High-speed machining goes mainstream.Mechanical Engineering, 1995, 50 (5): 56-61.
  • 5Mark J Kelly, Dario J Toncich. Overcoming encoder quantisation noise in an adaptive position controller. International Journal of Machine Tools & Manufacture, 2000,40(1):2 031-2 046.
  • 6聂毓琴.材料力学[M].北京:机械工业出版社,2005..
  • 7Bi Jie. A study of magnetostrictive mini-acutators [ D]. Maryland, USA: University of Maryland, 1997.
  • 8王以真.磁路设计原理[M].北京:国防工业出版社,2008:45-96.
  • 9Sarkar D, Modak J M. Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm [ J ]. Chemical Engineering Science, 2005, 60 (2) :481 - 492.
  • 10Michielssen E, Sajer J M, Ranjithan S, et al. Design of lightweight, broad band microwave absorbers using genetic algorithms [ J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6 -7) : 1 024 - 1 031.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部