摘要
针对回声状态网络(Echo state network,ESN)结构设计问题,提出一种基于脑网络的分层模块化回声状态网络(Hierarchical modular echo state network,HMESN)。脑网络的拓扑结构使功能网络具有丰富的动力学特性,因此,从生物仿生学角度出发,对HMESN的储备池进行分层设计,各层级上的神经元采用小世界网络构建算法生成模块化结构,并引入层级连接。基于脑网络分层模块化的拓扑特征弱化了神经元间的耦合程度,从而使神经元的动力学特性更为丰富,在功能与结构上更接近于真实生物神经网络,有效地提高了网络处理问题的能力。采用Mackey-Glass时间序列预测和非线性系统辨识对网络进行验证,证明该网络的有效性和可行性。
For the structure design of echo state network (ESN), a novel hierarchical modular echo state network (HMESN) based on brain networks is established. The topology of brain networks makes functional networks with rich dynamic behavior. Therefore, from a biological bionic point of view, the reservoir of HMESN for hierarchical design, each level of neurons using small world network construction algorithm to generate modular structure, as well as considered the hierarchical connection .Based on the topological characteristics of hierarchical modular in brain network, it weakens the coupling intensity among neurons, and enriches the dynamics of internal neurons. HMESN's reservoir is closer to the real biological neural networks from both structural and fimctional perspectives, which effectively improves the information processing ability of network. Finally, this proposed network is used for the Mackey-Glass time series prediction and the non-linear system identification to prove its validity and feasibility.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2015年第22期128-134,共7页
Journal of Mechanical Engineering
基金
国家自然科学基金资助项目(61034008
61203099
61225016)
关键词
回声状态网络
脑网络
储备池
时间序列预测
echo state network
brain networks
reservoir
time series prediction