期刊文献+

一种基于脑网络的分层模块化回声状态网络 被引量:5

A Hierarchical Modular Echo State Network Based on Brain Networks
下载PDF
导出
摘要 针对回声状态网络(Echo state network,ESN)结构设计问题,提出一种基于脑网络的分层模块化回声状态网络(Hierarchical modular echo state network,HMESN)。脑网络的拓扑结构使功能网络具有丰富的动力学特性,因此,从生物仿生学角度出发,对HMESN的储备池进行分层设计,各层级上的神经元采用小世界网络构建算法生成模块化结构,并引入层级连接。基于脑网络分层模块化的拓扑特征弱化了神经元间的耦合程度,从而使神经元的动力学特性更为丰富,在功能与结构上更接近于真实生物神经网络,有效地提高了网络处理问题的能力。采用Mackey-Glass时间序列预测和非线性系统辨识对网络进行验证,证明该网络的有效性和可行性。 For the structure design of echo state network (ESN), a novel hierarchical modular echo state network (HMESN) based on brain networks is established. The topology of brain networks makes functional networks with rich dynamic behavior. Therefore, from a biological bionic point of view, the reservoir of HMESN for hierarchical design, each level of neurons using small world network construction algorithm to generate modular structure, as well as considered the hierarchical connection .Based on the topological characteristics of hierarchical modular in brain network, it weakens the coupling intensity among neurons, and enriches the dynamics of internal neurons. HMESN's reservoir is closer to the real biological neural networks from both structural and fimctional perspectives, which effectively improves the information processing ability of network. Finally, this proposed network is used for the Mackey-Glass time series prediction and the non-linear system identification to prove its validity and feasibility.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第22期128-134,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61034008 61203099 61225016)
关键词 回声状态网络 脑网络 储备池 时间序列预测 echo state network brain networks reservoir time series prediction
  • 相关文献

参考文献16

  • 1JAEGER H. The “echo State” Approach to analyzing andtraining recurrent neural networksfR]. Berlin: GermanNational Research Center for Information Technology,2001.
  • 2SKOWRONSKI M D, HARRIS J G Minimum meansquared error time series classification using an echo statenetwork prediction model[C]//Proceedings of theInternational Symposium on Circuits and Systems. Islandof Kos: Circuits and Systems,2006: 3153-3156.
  • 3TONG M H,BICKETT A D, CHRISTIANSEN E M, etal. Learning grammatical structure with echo statenetworks [J]. Neural Network, 2007,20(3): 424-432.
  • 4乔俊飞,薄迎春,韩广.基于ESN的多指标DHP控制策略在污水处理过程中的应用[J].自动化学报,2013,39(7):1146-1151. 被引量:18
  • 5JAEGER H, HAAS H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wirelesscommunication[J]. Science, 2004,304(5667): 78-80.
  • 6韩敏,穆大芸.回声状态网络LM算法及混沌时间序列预测[J].控制与决策,2011,26(10):1469-1472. 被引量:21
  • 7XUE Y B, YANG L,HAYKIN S. Decoupled echo statenetworks with lateral inhibition[J]. Neural Networks,2007, 20(3): 365-376.
  • 8RODAN A, TINO E Minimum complexity echo state network[J]. IEEE Transaction on Neural Networks, 2011, 22(1): 131-144.
  • 9SONG Qingsong, FENG Zuren. Effects of connectivitystructure of complex echo state network on its predictionperformance for nonlinear time series[J]. Neurocomputing,2010, 73(10-12): 2177-2185.
  • 10CUI Hongyan, LIU Xiang, LI Lixiang. The architectureof dynamic reservoir in the echo state network[J]. Chaos,2012, 22(3): 033127.

二级参考文献19

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 3Gurupdesh S. Pandher. Forecasting multivariate time series with linear restrictions using constrained structural statespace models[J]. J of Forecasting, 2002, 21(4): 281-300.
  • 4Wan E A. Time series prediction by using a connectionist network with internal delay lines[C]. Proc of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Reading MA: Addison-Wesley, 1993: 195-217.
  • 5William W W H. Nonlinear multivariate and time series analysis by neural network methods[J]. Review Geophysics, 2004, 42(1): 1003-1008.
  • 6Vesanto J. Using the SOM and local models in time-series prediction[C]. Proc of WSOM'97, Workshop on Self-Organizing Maps. Espoo, 1997: 209-214.
  • 7Han M, Xi J H, Xu S G, et al. Prediction of chaotic time series based on the recurrent predictor neural network[J]. IEEE Trans on Signal Processing, 2004, 52(12): 3409- 3416.
  • 8Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
  • 9Jaeger H. Adaptive nonlinear system identification with echo state networks[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003, 15: 593-600.
  • 10Jaeger H. Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "echo state network" approach[R]. German National Research Center for Information Technology, 2002.

共引文献37

同被引文献44

  • 1夏绪辉,刘飞.逆向供应链物流的内涵及研究发展趋势[J].机械工程学报,2005,41(4):103-109. 被引量:43
  • 2徐晓飞,王忠杰,莫同.服务工程方法体系[J].计算机集成制造系统,2007,13(8):1457-1464. 被引量:32
  • 3Jaeger H. The echo state approach to analyzing and training recurrent neural networks [ R 3. Ger- man National Research Center for Information Technology, 2001.
  • 4Jaeger H. Adaptive Nonlinear System Identification with Echo State Networks [ J]. Nips,2003:609-616.
  • 5Ongenae F, Looy S V, Verstraeten D, et al. Time series classification for the prediction of dialysis in critically ill patients using echo state networks [ J ]. Engineering Applications of Artificial Intelli- gence, 2013, 26(3): 984-996.
  • 6Han S I, Lee J M. Fuzzy Echo State Neural Net- works and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear DynamicSystem [ J]. IEEE Transactions on Industrial E- lectronics, 2014, 61(2): 1099-1112.
  • 7Herbert J, Harald H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication [ J]. Science, 2004, 304 (5667) : 78-80.
  • 8Jaeger H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach [ R ]. Bremen, Ger- man National Research Center for InformationTe- chnology. 2002.
  • 9Jaeger H, Luko~evicius M, Dan P, et al. 2007 Special Issue: Optimization and applications of echo state networks with leaky-integrator neurons [J]. Neural Networks, 2007, 20(3) : 335-352.
  • 10Lun S X, Yao X S, Qi H Y, et al. A novel mod- el of leaky integrator echo state network for time- series prediction [J]. Neuro computing, 2015, 159(C) : 58-66.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部