期刊文献+

基于Dropout深度网络的两步图像标注算法 被引量:3

Two Steps Image Annotation Algorithm Based on Deep Network with Dropout
下载PDF
导出
摘要 基于文本的图像检索技术强烈依赖于图像标签,深度学习可以用来实现图像标签的自动生成。多分类器融合是一种有效提升分类器精度的方法。为了提升深度学习模型的泛化性能,提出了Dropout算法。该方法的本质是在训练过程中随机地丢弃若干神经元,等价于同时训练多个子网络。由于图像标签的多样性,提出了两步标签融合算法:第一步,根据多个不同网络的输出将图像标签词汇分为基准词汇、备选词汇和无关词汇;第二步,选出备选词汇中与基准词汇强相关的词汇,基准词汇和被选出的词汇可作为图像的标签。最后,算法选取3个常用的数据集对提出的算法模型进行验证,实验结果表明,多分类器融合算法可以有效地解决图像自动标注问题。 The performance of text-based image retrieval is highly dependent on manual tagging, and the deep learning can be used to realize image keywords generated automatically. Combining the predictions of many different large neural nets is an effective way for improving the classification accuracy. Firstly, for improving the generalization performance of the deep learning model, this paper proposes the Dropout algorithm. Dropout is a technique for addressing this problem by randomly dropping units(along with their connections) from the neural network during training. So the algorithm is equivalent to train many neural networks for prediction. Next, by the reason of the diverse keywords of image, this paper proposes a two steps algorithm for image annotation. First step, the keywords are divided into three parts: base keywords, candidate keywords and irrelevant keywords depending on the output of all neural networks.Second step, the keywords are chosen in candidate set depending on their correlation with base keywords. At last,the base keywords and chosen keywords are labeled for images. Conducting extensive experiments on three popular data sets, the results demonstrate that the proposed framework can achieve favorable performance for image annotation.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第12期1494-1505,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金~~
关键词 图像自动标注 深度学习 集成学习 机器学习 image auto-annotation deep learning assemble learning machine learning
  • 相关文献

参考文献19

  • 1卢汉清,刘静.基于图学习的自动图像标注[J].计算机学报,2008,31(9):1629-1639. 被引量:42
  • 2Lavrenko V, Manmatha R, Jeon J. A model for learning the semantics of pictures[C]//Advances in Neural Information Processing Systems 16: Proceedings of the 17th Conference on Neural Information Processing Systems, British Columbia, Canada, Dec 11-13, 2003. Cambridge, MA, USA: MIT Press, 2004: 553-560.
  • 3Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli relevance models for image and video annotation[C]//Procee-dings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun 27-Jul 2, 2004. Washington, DC, USA: IEEE Computer Society, 2004: 1002-1009.
  • 4Zhang Shaoting, Huang Junzhou, Huang Yuchi, et al. Automatic image annotation using group sparsity[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, Jun 13-18, 2010. Washington, DC, USA: IEEE Computer Society, 2010: 3312-3319.
  • 5Verma Y, Jawahar C V. Exploring SVM for image annotation in presence of confusing labels[C]//Proceedings of the 24th British Machine Vision Conference, Bristol, UK, Sep 9-13,2013.
  • 6Li Jia, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach[J], IEEE Transactionson Pattern Analysis and Machine Intelligence, 2003, 25(9): 1075-1088.
  • 7Cameiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 8Makadia A, Pavlovic V, Kumar S. A new baseline for image annotation[C]//Proceedings of the 10th European Conference on Computer Vision, Marseille, France, Oct 12-18, 2008. Berlin, Heidelberg: Springer, 2008: 316-329.
  • 9Guillaumin M, Mensink T, Verbeek J. TagProp: discriminative metric learning in nearest neighbor models for image auto-annotation[C]//Proceedings of the 12th International Conference on Computer Vision, Kyoto, Japan, Nov 10-12,2008. Berlin, Heidelberg: Springer, 2009: 309-316.
  • 10Zhou Ning, Cheung W K, Qiu Guoping, et al. A hybrid probabilistic model for unified collaborative and content-based image tagging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7): 1281-1294.

二级参考文献17

  • 1Lavrenko V, Manmatha R, Jeon J. A model for learning the semantics of pictures//Proceedings of Advance in Neutral Information Processing, 2003
  • 2Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli relevance models for image and video annotation//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 2:1002-1009
  • 3Zhou D, Bousquet O, Lal T N, Weston J, Seholkopf B. Ranking on data manifolds//Proeeedings of the 18th Annual Conferenee on Neural Information Proeessing System. 2003:169-176
  • 4Zhou D, Bousquet O, Lal T N, Weston J, Scholkopf B. Learning with local and global consistency//Proceedings of the 18th Annual Conference on Neural Information Processing System. 2003:237-244
  • 5Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models//Proceedings of the 26th Annual International ACM SIGIR. 2003:119-126
  • 6Kang F, Jin R, Sukthankar R. Correlated label propagation with application to multi-label learning//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006:1719-1726
  • 7Jin Y, Khan L, Wang L. Image annotations by combining multiple evidence WordNet//Proceedings of the 13th Annual ACM International Conference on Multimedia. 2005: 706- 715
  • 8Meila M, Shi J. A random walks view of spectral segmentation//Proceedings of the 8th International Workshop on Artificial Intelligence and Statistic. 2001
  • 9Thomas H C, Leiserson Charles E, Rivest Ronald L, Stein Clifford. Introduction to Algorithms, Chapter 23: Minimum Spanning Trees. MIT Press and McGraw-Hill, 2001: 561- 579
  • 10Salton G, Buckley C. Term weighting approaches in automatic text retrieval. Information Processing and Management, 1988, 24(5): 513-523

共引文献41

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部