期刊文献+

求解Richardson迭代方程的快速配置法 被引量:3

FAST COLLOCATION METHODS FOR SOLVING RICHARDSON ITERATION
原文传递
导出
摘要 本文依据多尺度快速配置法求解第一类Fredholm积分方程的Richardson迭代正则化方程.该方法得到了离散Richardson迭代正则化方程的快速解,在积分算子是弱扇形紧算子时,利用改进的迭代停止准则,给出了Richardson迭代正则化方法所得近似解的收敛率.最后,数值例子说明了算法的有效性. In this paper we develop a fast multiscale collocation method solving ill-posed Fredholm integral equation of the first kind via Richardson iteration. The method leads to fast solutions of discrete Richardson iteration regularization, if the integral operator is the weakly sectorial operator, the convergence rates of the Richardson iteration regularization are achieved by using a modified iterative stop rule. Finally, numerical experiments are given to illustrate the efficiency of the method.
出处 《数值计算与计算机应用》 CSCD 2015年第4期261-274,共14页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金资助项目(11361005 61502107) 江西省自然科学基金资助项目(20151BAB201011 20151BAB211014)
关键词 FREDHOLM积分方程 多尺度配置方法 迭代停止准则 Richardson迭代方法 弱扇形紧算子 Fredholm integral equation multiscale collocation method iterative stoprule Richardson iteration weakly sectorial operators
  • 相关文献

参考文献24

  • 1Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[M]. Dordrecht: Kluwer, 1996.
  • 2Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[M], Research Notes in Mathematics 105, Boston: Pitman, 1984.
  • 3Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems[M]. New York: Wiley, 1977.
  • 4Plato R. The Galerkin scheme for Lavrentiev's m-times iterated method to solve linear accretive Volterra integral equations of the first kind[J]. BIT, 1997, 37: 404-423.
  • 5Hao Shou. Application of the regularization method to the numerical solution of Abel's integral equation[J]. Journal of the computational mathematics, 1985, 3(1):28-34.
  • 6Groetsch C W. Uniform convergence of regularization methods for Fredholm equations of the first kind [J]. Journal of the Australian Mathematical Society, 1985, 39: 282-286.
  • 7Rajian M P. Convergence analysis of a regularized approximation for solving Fredholm integral equations of the first kind [J]. J. Math. Anal. Appl., 2003, 279: 522-530.
  • 8Plato R, Vainikko G. On the regularization of projection methods for solving ill-posed problems[J]. Numer. Math., 1990, 57: 63-79.
  • 9H~marik U. On the parameter choice in the regularized Ritz-Galerkin method [J]. Proc. Estonian Acad. Sci., Phys. Math., 1993, 42: 133-143.
  • 10Chen Z, Cheng S, Nelakanti G, Yang H. A fast multiscale Galerkin method for the first kind ill-posed integral equations via Tikhonov regularization[J]. Inter. J. Comput. Math., 2008, 27: 1029-0265.

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部