期刊文献+

基于改进SURF算法的双目视觉定位 被引量:7

Binocular Visual Positioning Based on Improved SURF Algorithm
下载PDF
导出
摘要 随着机器人技术的发展,机器人视觉也逐渐受到研究人员的重视。在机器人视觉系统的分类中,双目立体视觉系统应用最为广泛。在利用双目立体视觉对物体进行定位时,采用了各方面性能都较突出的SURF算法对摄取的图像特征点进行提取与匹配。由于SURF算法自身的缺陷,在进行特征点匹配时容易产生误匹配现象,为了消除误匹配,文中对SURF算法做了改进,加入了剔除误匹配点的RANSAC算法。实验结果表明,改进后的SURF算法,能够有效提高双目视觉定位的精准度。 With the development of robol technology,the research of robot vision get people's attention more and more. In robot vision system, the binocular vision applied most widely. When using the binocular vision to locate objects,SURF algorithm is adopted, it has more advantages on performance of many aspects, and it is used to realize feature point extraction and matching of images. Because of the influence of the objective factors, there is false match in the process of SURF matching of feature points. In order to eliminate the false match,the SURF algorithm is improved,the RANSAC algorithm is joined,it can eliminate false match. The experiment results show that the improved SURF algorithm can improve the binocular visual positioning accuracy greatly.
作者 韩峰 李晓斌
出处 《电视技术》 北大核心 2015年第23期22-25,30,共5页 Video Engineering
基金 上海市地方院校能力建议项目(11510502700) 上海市教委科研创新重点计划项目(12ZZ189)
关键词 机器人 视觉定位 SURF算法 RANSAC算法 特征点匹配 robot visual location SURF algorithm RANSAC algorithm feature point matching
  • 相关文献

参考文献10

  • 1HERBERT B, TINNE T, LUC V G. SURF: speeded up robust fea- tures[ C]//Proc. 9th European Conference on Computer Vision. Graz, Austria : ECCV Press ,2006:404 - 417.
  • 2HERBERT B,ANDREAS E,TINNE T,et al. Speeded -Up Robust Features(SURF) [ J ]. Computer Vision and Image Undetanding, 2008,110 ( 3 ) :346 - 359.
  • 3VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple [ C ]//Proe. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii : IEEE Press,20Ol :511 -518.
  • 4BROWN M, LOWED G. Invariant features from interest point groups [ C ]//Proc. British Machine Vision Conference, Cardiff, Wales, BMVC.[S. 1. ] :IEEE Press,2002:656-665.
  • 5LOWED G. Distinctive image features from scale -invariant key points [J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 6刘丹丹,魏维.一种改进的车头SURF特征提取和匹配[J].成都信息工程学院学报,2014,29(2):167-172. 被引量:1
  • 7FISCHLER M A,BOLLES R C. Random sample consensus:a par -adigm for mtlel fitting with applications to image analysis and auto- mated cartography[ J]. Communications of the ACM, 1981,24 ( 6 ) : 381-395.
  • 8RICHARD H, ANDREW Z. Multiple view geometry in computer [ M ]. 2nd ed . New York:Cambridge University Press,2003.
  • 9HARTLEY R I. Estimation of relative camera position for uncalibrat- ed cameras[ C]//Proe. the 2nd European Conference on Computer Vision. Santa Margherita Ligure,ltaly:ECCV, 1992:579 - 587.
  • 10YAN L W ,ZHEN J M. Automate panorama image mosaic and ghost eliminating[ C ]//Pro(:. IEEE International Conference on Multime- dia and Expo. Hannover, Germany :ICME ,2008 : 112-115.

二级参考文献13

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 2Yao He,Yuchuan Du,Lijun Sun.Vehicle Classification Method Based on Single-Point Magnetic Sensor[J].Procedia-Social and Behavioral Sciences,2012,43.
  • 3H Bay,A Ess,T Tuytelaars,et al.Surf:Speed up robust features[J].Computer Vision and Image Understanding,2008,110:346-359.
  • 4P Viola,M Jones.Rapid Object Detection using a Boosted Cascade of Simple[J].Computer Vision and Pattern Recogniton,2001:511-518.
  • 5H Li,B S Manjunath,S K Mintra.A Contour-Based Approach to Multi-Sensor Image Registration[J].IEEE Transactions on Image Processing,1995,(4):320-334.
  • 6D TelI,S Carlsson.Wide Baseline Point Matching Using Affine Invariants Computed From Intensity Profiles[J].European Conference on Computer vision,2000:814-828.
  • 7J Canny.A Computation Approach to Edge Detection[J].IEEE transaction on pattern Analysis and Matching Intelligence,1986,8:679-698.
  • 8K Mikolajczyk,C Schmid.Indexing Based on Scale Invariant Interest points[J].International Conference on Computer Vision,2001:525-531.
  • 9T Lindeberg.Junction Detection With Automatic Selection of Detection Scales and Localization Scales[J].International Conference on Image Processing,1994,30:79-116.
  • 10文学志,方巍,郑钰辉.一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法[J].电子学报,2011,39(5):1121-1126. 被引量:87

同被引文献76

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部