期刊文献+

微波辅助生物柴油生产的一体化计算 被引量:7

Integrative calculation for microwave process of biodiesel production
原文传递
导出
摘要 多物理场仿真动态计算对于优化微波化学加热反应体系的生产工艺,避免高功率微波带来的安全问题起到极其重要的作用.然而目前大多数微波加热化学反应的多物理场模型仅引入电磁和热传模块进行分析,且将电磁、热力学等物性参数视为常量而忽视了反应体系中各组分和温度变化对物性参数的影响,从而影响到模型的可靠性和准确性.本工作在以往模型的基础上,利用最近提出的简化且精度更高的介电系数表达式,通过引入化学反应工程和传质的计算来对电磁、热力学等物性参数随着反应体系浓度和温度的变化进行自适应实时更新,同时考虑了自然对流对传热和传质的影响.新模型避免了以往模型需要手动更新参数、介电系数表达公式复杂、热力学参数仅根据反应组分变化更新而无法获得更多化学反应模块信息、忽略液体自然对流对温度扩散的影响的弊端,实现了微波促进生物柴油生产的一体化计算.通过实验测量的温度分布验证了模型的合理性和准确性. The multiphysics simulations for the microwave heating on the chemical reaction have been deemed as an efficient way to optimize the microwave treating process and avoid the safety problems coursed by the high-power microwave energy applied. Unfortunately, most of the multiphysics simula- tions for the microwave heating on the chemical reaction only involve the Electromagnetics and Heat transfer modules and treat the physical properties as constant values~ ignoring the influent of variation of the chemical reaction status. Compared to the previous model, Chemical Reaction Engineering and Mass Transfer have been added and a simplified bivariate characterization for effective permittivity was em- ployed in the new model. Therefore, all properties are automatically updated by the reaction solution^s component and temperature. Meanwhile, the influence of the nature convection for heat and mass trans- fer is discussed. The problems such as manual update for the properties~ complex characterization function for effective permittivity; thermal properties only updated by the chemical components; ignore the influence of nature convection for the temperature diffusion and less information about chemical reaction system in previous model can be avoided. The temperature diffusion coursed by nature convection has also been discussed. Integrative calculation for microwave process of biodiesel production is done in this study. Good agreement can been seen between the experimental and simulated results.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期1285-1292,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家重点基础研究发展"973计划"(2013CB328900 2013CB328905.) 中科院电子所高功率微波源与技术重点实验室
关键词 微波 生物柴油 多物理场建模 优化生产工艺 Microwave Biodiesel Multiphysics Simulation Process Optimize
  • 相关文献

参考文献19

  • 1Leadbeater N E, Stencel L M. Fast,easy prepara-tion of biodiesel using microwave heating [J]. Ener*gy fuels. 2006, 20:2281.
  • 2Ruan R, Du Z Y, Li Y C, Wang X Q, Wan Y Q,Chen Q, Wang C G, Lin X Y, Liu Y H,Chen P.Microwave-assisted pyrolysis of microalgae for bio-fuel production [J]. Bioresource Technology, 2011,102: 4890.
  • 3Ruan R,Yu F,Deng SB, Chen P, Liu YH,WanYQ,Olson A,Kittelson D. Physical and chemicalproperties of bio-oils from microwave pyrolysis ofcorn stover [J]. Appl Biochem Biotechnol. 2007,137: 957.
  • 4Miura M, Kaga H, Sakurai A, Kakuchi T, Taka-hashi K. Rapid pyrolysis of wood block by micro-wave heating [J], J Anal Appl Pyrolysis. 2004,71: 187.
  • 5Zhang Q,Jackson T,Aydin U. Numerical model-ing of microwave induced natural convection [J].International Journal of Heat and Mass Transfer.2000, 43: 2141.
  • 6Huang K,Zhu H,Wu L. Temperature cycle meas-urement for effective permittivity of biodiesel reac-tion [J]. Bioresource Technology, 2013 , 131 : 541.
  • 7Zhu H, Huang K. The effective permittivity of thereacting mixture solution for multiphysics calcula-tion [J]. Joural of Solution Chemistry,2012,41: 1729.
  • 8Wu L,Zhu H,Huang K. Thermal analysis on theprocess of microwave-assisted biodiesel production[J]. Bioresource Technology, 2013,133: 279.
  • 9彭宝祥,舒庆,王光润,王金福.酸催化酯化法制备生物柴油动力学研究[J].化学反应工程与工艺,2009,25(3):250-255. 被引量:13
  • 10Li C C. Thermal conductivity of liquid mixtures[J]. AlChE Journal, 1976,22(5): 927.

二级参考文献13

  • 1周良虹,黄亚晶.国外生物柴油产业与应用状况[J].可再生能源,2005,23(4):62-67. 被引量:53
  • 2张龙,杜风光,史吉平,闫德冉,董青山.生物柴油研究与应用现状及展望[J].江苏化工,2005,33(6):21-24. 被引量:13
  • 3杨颖,鲁厚芳,梁斌.SO_4^(2-)/TiO_2固体酸煅烧条件对其催化酯化反应活性的影响[J].化学反应工程与工艺,2007,23(1):13-18. 被引量:4
  • 4Ma F, Mildford A H. Biodiesel Production: a Review. Bioresource Technology, 1999, 70 (1): 1-15.
  • 5Felizardo P, Correia M J N, Raposo I. Production of Biodiesel from Waste Frying Oils. Waste Management, 2006, 26 (5):487-494.
  • 6Zhang Y, Dube M A, McLean D D, et al. Biodiesel Production from Waste Cooking Oil (1): Process Design and Technological Assessment. Bioresource Technology, 2003, 89 (1): 1-16.
  • 7Marchetti J M, Errazu A F. Esterification of Free Fatty Acids Using Sulfuric Acid as Catalyst in the Presence of Triglycerides. Biomass & Bioenergy, 2008, 32 (9): 892-895.
  • 8Juan J C, Zhang J C, Yarmo M A. Structure and Reactivity of Silica-Supported Zirconium Sulfate for Esterification of Fatty Acid under Solvent-Free Condition. Applied Catalysis A-General, 2007, 332 (2):209-215.
  • 9Peng B X, Shu Q, Wang J F, et al. Biodiesel Production from Cheap Raw Feedstocks via Solid Acid Catalysis. Process Safety and Environmental Protection, 2008, 86 (6):441-447.
  • 10Takagaki A, Toda M, Okamura M, et al. Esterification of Higher Fatty Acids by a Novel Strong Solid Acid. Catalysis Today, 2006, 116 (2): 157-167.

共引文献12

同被引文献25

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部