期刊文献+

迭代软阈值法压缩感知重建谱峰较宽的二维固体谱 被引量:1

Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks
下载PDF
导出
摘要 压缩感知技术可以打破传统奈奎斯特采样定理的限制,利用优化算法对欠采数据进行重建,并获得高质量的结果,因此在核磁共振领域得到了广泛的关注.但是当核磁共振谱的谱峰很宽时,基于共轭梯度方法的压缩感知重建却难以得到令人满意的谱图.因此,该文采用凸优化非线性重建算法,使用基于谱图域软阈值的压缩感知算法重建固体二维宽谱(1H双量子-单量子谱或MQMAS谱),有效地解决了宽峰在重建时变弱的问题. Conjugate gradient(CG) method has been used previously to reconstruct double quantum-single quantum(DQ-SQ) spectra. However, satisfactory results can be obtained only when the spectra contain only narrow peaks, but not in the case when broad peaks are present. Compressed sensing technology can break the limit of the Nyquist acquisition theorem and reconstruct under-sampled data with high quality. The technology has been applied in the field of nuclear magnetic resonance(NMR). In this paper, we propose to use compressed sensing with iterative soft thresholding(IST) to reconstruct two-dimensional solid-state NMR spectra with broad peaks, such as the spectra obtained in 1H DQ-SQ and 87 Rb multiple quantum-magic angle spinning(MQ-MAS) experiments. It was found that, with the IST method, compressed sensing technology could be used to reconstruct high-quality spectra containing broad peaks from under-sampled datasets.
出处 《波谱学杂志》 CAS CSCD 北大核心 2015年第4期551-562,共12页 Chinese Journal of Magnetic Resonance
基金 上海市科委资助项目(08DZ1900700)
关键词 压缩感知(Compressed Sensing CS) 固体核磁共振 软阈值 随机欠采 共轭梯度 compressed sensing solid-state NMR iterative soft thresholding pseudo random sampling conjugate gradient
  • 相关文献

参考文献36

  • 1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions[M]. Oxford: Oxford University Press, 1990.
  • 2Massiot D, Fayon F, Capron M, et al. Modelling one and two dimensional solid-state NMR spectra[J]. Magn Reson Chem, 2002, 40(1): 70-76.
  • 3Kazimierczuk K, Orekhov V Y. A comparison of convex and non-convex compressed sensing applied to multidimensional NMR[J]. J Magn Reson, 2012, 223:1 -10.
  • 4Bruschweiler R. Theory of covariance nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2004, 121 (1): 409-414.
  • 5Daniell G J, Hore P J. Maximum entropy and NMR-A new approach[J]. J Magn Reson, 1989, 84(3): 515-536.
  • 6Coggins B E, Zhou P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN[J]. J Biomol NMR, 2008, 42(4): 225-239.
  • 7Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1 182- 1 195.
  • 8Baraniuk R G. Compressive sensing[J]. IEEE Signal Proc Mag, 2007, 24(4): 118-124.
  • 9Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing[M]. Berlin: Springer, 2013.
  • 10Donoho D L. Compressed sensing[J]. IEEE T Inform Theory, 2006, 152(4): 1 289- 1 306.

二级参考文献25

  • 1Jaravine V I I, Orekhov V Y. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy[J]. Nature Methods, 2006, 3(8): 605-607.
  • 2Bruschweiler R. Theory of covariance nuclear magnetic resonance spectroscopy[J]. I Chem Pb_ys, 2004, 121 ( 1 ): 409 - 414.
  • 3Hu B W, Zhou P, Noda I, et al. An NMR approach applicable to biomolecular structme characterization[J]. Anal Chem, 2005, 77(23): 7 534-7 538.
  • 4Barua J C J, Lane E D, Mayger M R, et al. Exponential sampling, an alternative method for sampling in two-dimemsional NMR experiments[J]. J Magn Reson, 1987, 73(1): 69-77.
  • 5Jeffrey C, Hoch A S S. Maximum entropy reconstruction, spectrum analysis and deconvolution in multidimensional nuclear magnetic resonance[J]. Method Enzymol, 2002, 338: 159- 178.
  • 6Kazimierczuk K, Orekhov V Y. Accelerated NMR spectroscopy by using compressed sensing[J]. Angew Chem Int Ed, 2011, 50(24): 5 556-5 559.
  • 7Coggins B E, Zhou P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN[J]. J Biomol NMR, 2008, 42(4): 225 -239.
  • 8Kazimierczuk K, Kozminski W, Zhukov I. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets[J]. J Magn Reson, 2006, 179(2): 323 -328.
  • 9Kazimierezuk K, Zawadzka A, Kozminski W, et al. Random sampling of evolution time space and fourier transform processing[J]. J Biomol NMR, 2006, 36(3): 157 - 168.
  • 10Emmanuel J C, Justin R, Member L, et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inf Theory, 2006, 52(2): 489-509.

共引文献2

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部