期刊文献+

一种改进的格子玻尔兹曼方法及其在流固耦合传热问题中的应用

A Distribution Function Correction-based Immersed Boundary-lattice Boltzmann Method and Its Application in Natural Convections with Fluid-structure Interaction for Heat Transfer Improvement
下载PDF
导出
摘要 含热源颗粒的方腔自然对流是一种常见的流固耦合热流动问题.本文提出一种使用分布函数修正的浸没边界格子玻尔兹曼方法来处理流固耦合和流场及温度场耦合问题,并把该方法运用到含移动热源颗粒的方腔自然对流的数值模拟中,分析了方腔内的速度,温度,热源颗粒的轨迹和受力,探究其热源颗粒对传热机理的改善,解决了含热源的自然对流情况下流固耦合传热问题. Natural convections with heated particles inside are very common for thermal fluid-structure interaction. In this paper, a distribution function correction-based immersed boundary-lattice Boltzmann method(LBM)is presented for thermal fluid-structure interaction(FSI)problems. The idea of the present work comes from the intrinsic feature of LBM, which uses the density distribution function as a dependent variable to evolve the flow field. This distribution function correction method keeps the merits of the original LBM, and its implementation is still simple, straightforward and efficiency. A systematic study of a natural convection with moving heated circle particles inside a square cavity is carried out to demonstrate its capability. The velocity and temperature of the flow field, the routes and forces of the particles are obtained to analyze the influence of the particles on heat transfer. Moreover, it is found that adding moving particles in the natural convection flows in a square cavity enhances heat transfer of the flows.
出处 《汕头大学学报(自然科学版)》 2015年第4期3-13,2,共11页 Journal of Shantou University:Natural Science Edition
基金 国家自然科学基金面上项目(11372168)
关键词 浸没边界法 格子玻尔兹曼方法 流固耦合 传热改善 immersed boundary method lattice Boltzmann method fluid-structure interaction heat transfer improvement
  • 相关文献

参考文献16

  • 1Weissenbock N M,Weiss C M,Schwammer H M,et al.Thermal windows on the body surface of African elephants(Loxodonta africana)studied by infrared thermography[J].J Therm Biol,2010,35(4):182-188.
  • 2Mills Z G,Aziz B,Alexeev A.Beating synthetic cilia enhance heat transport in microfluidic channels[J].Soft Matter,2012,8(45):11508-11513.
  • 3Beeby S P,Tudor M J,White N M.Energy harvesting vibration sources for microsystems applications[J].Meas Sci Technol,2006,17:175-195.
  • 4Fu W S,Tong B H.Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow[J].Int J Heat Mass Transfer,2002,45(14):3033-3043.
  • 5Biswas G,Chattopadhyay H.Heat-transfer in a channel with built-in wing-type vortex generators[J].Int J Heat Mass Transfer,1992,35(4):803-814.
  • 6Fan A W,Deng J J,Nakayama A,et al.Parametric study on turbulent heat transfer and flow characteristics in a circular tube fitted with louvered strip inserts[J].Int J Heat Mass Transfer,2012,55(19/20):5205-5213.
  • 7Peskin C S.Numerical analysis of blood flow in the heart[J].J Comput Phys,1977,25(3):220-252.
  • 8Shyy W,Udaykumar H S,Rao M M,et al.Computational fluid dynamics with moving boundaries[M].Washington:Taylor&Francis Group,1996.
  • 9Shenand L W,Chan E S.Numerical simulation of fluid-structure interaction using a combinedvolume of fluid and immersed boundary method[J].Ocean Engineering,2008,35(8/9):939-952.
  • 10Feng Z G,Michaelides E E.The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J].J Comput Phys,2004,195(2):602-628.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部