摘要
针刈现有影像融合与分割方法之间缺乏协同的问题,借鉴数据同化系统能够协同其模型算子和观测算子,并且能够自适应地优化其本身的思想,提出一个多源影像融合与分割的协同框架.在该框架下,以基于对比度金字塔变换和基于非下采样的Contourlet变换的两种融合方法分别模拟模型算子和观测算子,以评价分割效果的概率随机系数为目标函数,以带交叉算子的粒子群算法作为数据同化系统的优化算法.该框架可根据融合结果影像来调整分割算法的参数,利用分割结果来指导融合结果的优化,从而使得影像融合与分割协同工作.二组实验验证了该框架的有效性.
In order to solve the problem that lack of coordination between image fusion and segmentation methods.A cooper-ation framework for multisource remote sensing images fusion and segmentation was proposed in view of the advantage that data as-similation system can integrate its model operator and observation operator,and it can be optimized itself.Under this framework,two fusion methods based on contrast Pyramid transform and nonsubsampled contourlet transform were used as model operator and ob-servation operator,the objective function was composed of probabilistic rand index to evaluate segmentation effect and particle swarm optimization with crossover operator was employed.The framework can adaptively adjust the parameters of segmentation al-gorithm according to fused images,and can use the segmentation results to guide the optimization of fused images,so as to make im-age fusion and image segmentation cooperate with each other.Two groups of experiments validate the effectiveness of the frame-work.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2015年第10期1994-2000,共7页
Acta Electronica Sinica
基金
国家自然科学基金(No.41101425
No.41301470
No.61471170)
湖南省教育厅资助科研项目(No.12B071
No.13A048)
湖南省科技计划项目(No.2012FJ3060)
湖南省自然科学基金(No.13JJ3111)
湖南省重点学科建设项目
关键词
影像分割
影像融合
粒子群优化算法
数据同化
image segmentation
image fusion
particle swarm optimization algorithm
data assimilation