期刊文献+

传感器网络中自适应滑动窗口的高效Top-k查询技术

Energy-Efficient Top-k Query Techniques Based on Adaptive Filters in Wireless Sensor Networks
下载PDF
导出
摘要 在传感器节点上安装动态窗口的过滤机制是无线传感器网络Top-k查询处理研究的一个重要方向.然而,已有过滤窗口算法会产生很大的窗口更新代价.本文针对过滤窗口更新频繁产生巨大能量消耗的问题,提出基于高斯过程回归预测的自适应滑动窗口Top-k查询处理算法FUGPR.当过滤窗口发生变化时,对传感器网络节点读数进行预测,评估窗口更新前后的代价来决定过滤窗口是否更新,从而减少了频繁更新窗口带来的巨大能量消耗,实验表明,本文提出的FUGPR算法无论在真实传感器网络环境的数据集上还是模拟的传感器网络环境数据集上都可以有效地减少由于过滤窗口更新带来的能量消耗. Adopting the filtering mechanism of dynamic filtering windows installed on sensor nodes to process top-k queries is an important research direction in wireless sensor networks.Existing algorithms based on filters consume a vast amount of energy on filter updating.As updating filters consume a large amount of energy,a top-k query processing algorithm adopting adaptive filters named FUGPR based on Gaussian process regression is provided.When the filters change,the sensor readings are predicted to calcu-late the updating costs of filters,then FUGPR decides whether the filters need to be updated or not.Thus,the energy consumption for updating filters is decreased.Experimental results show that our approach can reduce energy consumption efficiently for updating fil-ters on real and simulated datasets.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第10期2117-2123,共7页 Acta Electronica Sinica
基金 江苏省自然科学基金(No.BK2014086) 中央高校基本科研业务费专项资金(No.NS2015095) 南京航空航天大学研究生创新基地(实验室)开放基金(No.KFJJ201461)
关键词 过滤窗口 无线传感器网络 FUGPR Top-k FUGPR filtering windows wireless sensor networks Top-k
  • 相关文献

参考文献10

  • 1Dylla M,Miliaraki I,Theobald M.Top-k query processing in probabilistic databases with non-materialized views[A].Proceedings of the 29th International Conference on Data Engineering[C].Washington:IEEE Press,2013.122-133.
  • 2Madden S,Franklin M,Hellerstein J,et al.TAG:a tiny aggregation service for ad-hoc sensor networks[J].ACM Special Interest Group on Operating Systems Review,2002,36(SI):131-146.
  • 3Silberstein A,Braynard R,Ellis C,et al.A sampling-based approach to optimizing Top-k queries in sensor networks[A].Proceedings of the 22nd International Conference on Data Engineering[C].Atlanta:IEEE Press,2006.68-78.
  • 4Chen B,Liang W,Zhou R,et al.Energy-efficient Top-k query processing in wireless sensor networks[A].Proceedings of the 19th ACM International Conference on Information and Knowledge Management[C].New York:ACM Press,2010.329-338.
  • 5AbbasiA,Khonsari A,Farri N.MOTE:efficient monitoring of Top-k set in sensor networks[A].IEEE Symposium on Computers and Communications[C].Riccione:IEEE Press,2008.957-962.
  • 6Wu Min-ji,Xu Jian-liang,Tang Xue-yan.Processing precision-constrained approximate queries in wireless sensor networks[A].Proceedings of International Conference on Mobile Data Management[C].Nara:IEEE Press,2006.31-38.
  • 7Wu Min-ji,Xu Jian-liang,Tang Xue-yan,et al.Top-k monitoring in wireless sensor networks[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(7):962-976.
  • 8Mai H,Lee Y,Lee K,et al.Distributed adaptive Top-k monitoring in wireless sensor networks[J].The Journal of Systems and Software,2011,84(2):314-327.
  • 9C E Rasmussen,C K I Williams.Gaussian Processes for Machine Learning[M].London:MIT Press,2006.
  • 10Silberstein A,Braynard R,Yang J.Constraint chaining:on energy-efficient continuous monitoring in sensor networks[A].Proceedings of the ACM SIGMOD International Conference on Management of Data[C].Chicago:ACM Press,2006.157-168.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部