期刊文献+

基于粗糙集的改进Leader聚类算法 被引量:1

An improved rough-based Leader clustering algorithm
下载PDF
导出
摘要 传统的聚类算法,如Leader算法和k-Means方法等,只能处理完整精确的数据集,数据项只能被划分到一个簇.而粗糙集理论用上近似集和下近似集表示一个类,尤其当数据有噪声、不完全和不精确性时,非常有优势.在经典的Leader算法中引入粗糙集理论,以处理模糊数据的聚类,得到改进的Leader算法——IRL(improved roughbased Leader)算法.IRL算法首先扫描数据项集,生成初始L集、RL集、RU集;然后优化RU集;最后再合并L集、RL集、RU集,得到最后的聚类结果.实验结果表明,IRL算法非常有效. Objects are partitioned into clusters with crisp boundaries in the conventional algorithms such as Leader algorithm and k-Means algorithm.However,rough set is represented with lower-bound and upper-bound,and is good for the case when the data is incomplete,inaccurate and noisy.In this paper,IRL(improved rough-based Leader)algorithm is proposed based on rough set and Leader algorithm.At first,the data set is scanned in order to gain the set L,RLand RU.And then,the set RUis optimized.At last,the set L,RLand RU are merged in order to find the clustering result.The experimental results show that the algorithm is effective.
作者 张琼
出处 《江苏师范大学学报(自然科学版)》 CAS 2015年第4期50-52,共3页 Journal of Jiangsu Normal University:Natural Science Edition
基金 福建省中青年教师教育科研项目B类(JBS14650)
关键词 Leader算法 粗糙集 聚类 上近似 下近似 Leader algorithm rough set clustering upper approximation lower approximation
  • 相关文献

参考文献6

二级参考文献31

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 4Han Jiawei,Kamber M. Data Mining:Concepts and Techniques. San Francisco, US: Morgan Kaufmann, 2001
  • 5MacQueen J B. Some methods for classification and analysis of multivariate observation//Proceeding 5^th Berkley Symposium, on Mathematical Statistics and Probability. 1967, I:281-297. University of California Press, 1967, Xvii, 666
  • 6Huang Zhexue. Clustering Large Data Sets with Mixed Numeric and Categorical Values//PAKDD'97. Singapore, World Scientific, 1997:21-35
  • 7Huang Zhexue. Extensions to the k Means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 1998,2 : 283-304
  • 8Michael K, Ng M, Li Junjie, et al. On the impact of dissimilarity measure in K-Modes clustering algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007,29 (3) : 503-507
  • 9Li Cen, Biswas Gautam. Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on Knowledge and Data Engineering, 2002,14 :673-690
  • 10Hsu C C, Chen Chinlong, Su Yuwei. Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 2007 :4474-4492

共引文献33

同被引文献15

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部