期刊文献+

Au-Pd/石墨烯和Au-Pd/碳纳米管催化电化学氧化甲酸(英文) 被引量:3

Effect of graphene and carbon nanotubes supported Au-Pd nanoparticles for electrocatalytic oxidation of formic acid
下载PDF
导出
摘要 利用化学还原法合成了石墨烯和碳纳米管负载的Au-Pd纳米粒子.石墨烯负载的Au-Pd纳米粒子(AuPd/G)的粒径远小于碳纳米管负载的Au-Pd纳米粒子(Au-Pd/CNTs)的粒径,且Au-Pd纳米粒子在复合材料上分布均匀.与碳纳米管负载的Au-Pd纳米粒子催化剂相比,石墨烯负载的Au-Pd催化剂对甲酸的催化显示出更好的电催化活性,结果表明作为Au-Pd纳米粒子的基底,石墨烯可以明显提高Au-Pd纳米粒子的电催化活性.在0.1mol/L H_2SO_4中,该纳米修饰电极对甲酸有良好的电催化作用,甲酸在电极上的氧化动力学过程为扩散控制过程. Graphene and carbon nanotubes supported Au-Pd nanoparticles are synthesized by a chemical reduction method.The particle size of graphene supported Au-Pd nanoparticles(AuPd/G)is much smaller than that of carbon nanotubes supported Au-Pd nanoparticles(Au-Pd/CNTs).There is a relatively high degree of nanoparticles dispersion on Au-Pd/G.The Au-Pd/G catalyst shows a higher electrocatalytic activity for the formic acid electrooxidation compared to the Au-Pd/CNTs catalyst indicating the substrate graphene can obviously enhance the catalytic activity of Au-Pd nanoparticles.In 0.1mol/L H2SO4 solution,the modified electrode exhibited good electrocatalytic activity on the oxidation of formic acid,and the electrode reaction of formic acid was a diffusion control process.
出处 《化学研究》 CAS 2015年第6期570-574,共5页 Chemical Research
基金 Supported by the National Natural Science Foundation of China(21403053) the Joint Funds of the National Natural Science Foundation of China(U1404503)
关键词 金-钯纳米粒子 碳纳米管 石墨烯 甲酸氧化 Au-Pd nanoparticles carbon nanotubes graphene formic acid oxidation
  • 相关文献

参考文献9

  • 1i HOSHI N, KIDA K, NAKAMURA M, et al. Structur-al effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium [J]. J Phys Chem B, 2006, 110: 12480--12484.
  • 2ZHANG G J, WANG Y, WANG X, et al. Preparation of Pd-Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxida- tion [J]. Appl Catal B-Environ, 2011, 102: 614--619.
  • 3WANG X, TANG Y, GAO Y, et al. Carbon-supported Pd-Ir catalyst as anodie catalyst in direct formic acid fuel cell [J]. J Power Sources, 2008, 175: 784-788.
  • 4LARSEN R, ZAKZESKI J, MASEL R I. Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation [J]. Electrochem Solid St, 2005, 8: A291--A293.
  • 5WASZCZUK P, BARNARD TM, RICE C, et al. A nanoparticle catalyst with superior activity for electroox- idation of formic acid [J]. Electrochem Commun, 2002, 4.. 599--603.
  • 6LV J J, LI S S, WANG A J, et al. Monodisperse Au-Pd bimetallic alloyed nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity to- wards oxygen reduction reaction [J]. Electrochim Acta, 2014, 136: 521--528.
  • 7HSU C J, HUANG C W, HAO Y W, et al. Au/Pd core-shell nanoparticles for enhanced electrocatalytic ac tivity and durability [J]. Electrochem Commun, 2012, 23: 133--136.
  • 8YANG J H, MAD. Graphene-supported Pd nanoparti- cles: microwave-assisted synthesis and as microwave-ac- tive selective hydrogenation catalysts [J]. Rsc Adv, 2013, 3: 10131--10134.
  • 9LI D, KANER R B. Materials science-graphene-based materials [J]. Science, 2008, 320: 1170-1171.

同被引文献40

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部