期刊文献+

异原子掺杂石墨烯量子点的制备、性能及应用 被引量:2

Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots
原文传递
导出
摘要 发光石墨烯量子点(graphene quantum dots,GQDs)的良好理化性能引起许多领域研究人员的关注,但其荧光量子产率不高、活性位点相对较少、选择性较差等缺陷限制了它在分析传感领域的应用。异原子掺杂GQDs可以在一定程度上解决这些问题。本文介绍了异原子掺杂GQDs的制备方法、理化性质和应用情况,并对异原子掺杂GQDs的发展和应用前景进行分析和展望。 Luminescent graphene quantum dots (GQDs) display excellent physicochemical properties, which have ignited tremendous and increasing research interest of researchers from different fields. However, there are still some limitations including low quantum yield, less active sites and unsatisfactory selectivity, which impede their wide applications. As research continues, doping GQDs with heteroatoms has been considered as an effective strategy to address the above problems. In this review, we summarize the preparation methods, physicochemical properties and applications of heteroatom-doped GQDs. There are two kinds of heteroatom- doped GQDs including single-doped GQDs (B, N, S, F, Cl, et al. ) and co-doped GQDs (B,N or N,P or N, S co-doping). The introduced heteroatoms changed the charge density and charge distribution of the GQDs, resulting in the enhancement of fluorescence quantum dots, more active sites and the appearances of new physicochemical properties including electrocatalytic activity and intrinsic peroxidase-like catalytic activity. We also give a perspective on the subsequent development and promising applications of heteroatom-doped GQDs.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2015年第11期1523-1530,共8页 Progress in Chemistry
基金 国家自然科学基金项目(No.21375112) 厦门市科技局高校创新项目(No.3502Z20143025)资助~~
关键词 异原子掺杂石墨烯量子点 制备方法 理化性质 应用 heteroatom-doped graphene quantum dots preparation methods physicochemical properties applications
  • 相关文献

参考文献48

  • 1Zhang Z, Zhang J, Chen N, Qu L. Energy Environ. Sci. , 2012, 5 (10): 8869.
  • 2Zhu S J, Tang S J, Zhang J H, Yang B. Chem. Commun. , 2012, 48 (38) : 4527.
  • 3Li L, Rong M, Luo F, Chen D, Wang Y, Chen X. Trends Anal. Chem. , 2014, 54: 83.
  • 4Zhou X J, Guo S W, Zhang J Y. Chem. Phys. Chem. , 2013, 14 (12) : 2627.
  • 5Dai Y, Long H, Wang X, Wang Y, Gu Q, Jiang W, Wang Y, Li C, Zeng T H, Sun Y, Zeng J. Part. Part. Syst. Charact. , 2014, 31 (5) : 597.
  • 6Wang X, Sun G, Routh P, Kim D H, Huang W0 Chen P. Chem. Soe. Rev. , 2014, 43 (20) : 7067.
  • 7Zhang L, Zhang Z Y, Liang R P, Li Y H, Qiu J D. Anal. Chem. , 2014, 86 (9): 4423.
  • 8Fan ZT, LiYC, LiXH, FanLZ, ZhouSX, FangDC, Yang S H. Carbon, 2014, 70: 149.
  • 9Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Left. , 2014, 595/596: 203.
  • 10QianZ S, Shah X Y, Chai L J, Ma J J, Chen J R, Feng H. ACS Appl. Mater. Interfaces, 2014, 6 (9) : 6797.

同被引文献63

  • 1Yao J,Yang M,Duan Y.Chem.Rev.,2014,114(12):6130.
  • 2Howes P D,Chandrawati R,Stevens M M.Science,2014,346(6205):1247390.
  • 3Sun Y P,Zhou B,Lin Y,Wang W,Fernando K A S,Pathak P,Meziani M J,Harruff B A,Wang X,Wang H F,Luo P G,Yang H,Kose M E,Chen B,Veca L M,Xie S Y.J.Am.Chem.Soc.,2006,128(24):7756.
  • 4Cao L,Wang X,Meziani M J,Lu F S,Wang H F,Luo P G,Lin Y,Harruff B A,Veca L M,Murray D,Xie S Y,Sun Y P.J.Am.Chem.Soc.,2007,129(37):11318.
  • 5Ponomarenko L A,Schedin F,Katsnelson M I,Yang R,Hill E W,Novoselov K S,Geim A K.Science,2008,320(18):356.
  • 6Pan D Y,Zhang J C,Li Z,Wu M H.Adv.Mater.,2010,22(6):734.
  • 7Benítez-Martínez S,Valcárcel M.Trends Anal.Chem.,2015,72:93.
  • 8Niu W J,Li Y,Zhu R H,Shan D,Fan Y R,Zhang X J.Sensor.Actuat.B,2015,218:229.
  • 9Lim S Y,Shen W,Gao Z Q.Chem.Soc.Rev.,2015,44(1):362.
  • 10Norris D J,Efros A L,Erwin S C.Science,2008,319(5871):1776.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部