期刊文献+

基于TG-FTIR研究海藻与稻壳共热解协同耦合机理

TG-FTIR analysis of seaweed / rice husk blends during co-pyrolysis
下载PDF
导出
摘要 为了研究大型海藻与木质类生物质的混合热解机理,基于热重-红外联用(TG-FTIR)技术,对条浒苔、稻壳及条浒苔+稻壳混合物(质量比为1∶1)进行热解试验.通过样品的微观结构分析可知,条浒苔主要成分为硫酸多糖、蛋白质等.通过热解热重试验研究可知,在样品的主要挥发分析出阶段,海藻表现为放热反应,其与稻壳共热解时也为放热,说明混合热解实现了能量的耦合;混合后热失重速率试验值相对理论叠加值有所提高,说明混合热解使各组分之间产生协同反应.通过在线红外光谱分析热解过程中的气体产物,可知条浒苔和稻壳在混合热解速率最大时羰基C=O和S=O析出峰增强,并产生伸缩振动的醚键C—O—C的特征峰.最后采用Coats-Redfern积分法对热解过程进行动力学分析,发现混合后反应的活化能降低,使得热解更易进行. To investigate the pyrolysis mechanism of the mixture, the algae mixed with 1 : 1 husk was investigated by TG-FTIR analysis. The results indicate that the Enteromorpha clathrate is mainly composed of sulfated polysaccharides and protein by micro-structure analysis. The main pyrolysis of the EN is a special exothermic process by the differential scanning calorimetry analysis. The pyrolysis of mixture is also exothermal process, which illustrates that the co-pyrolysis can activate the reaction to achieve energy coupling. The comparison of DTG and calculated curves of the mixture indicates that in the stage of main volatile gases emitting, the pyrolysis rate is increased after mixture. The results show that the mixture feature is not a simple superposition of different component but existing synergy effects. The FFIR analysis of volatile gases during pyrolysis illuminates that due to the co-pyrolysis of EN and HU, the intensities of C=O and S=O precipitation peaks are enhanced. According to the kinetic analysis by Coats-Redfern method, it is indicated that activation energy is decreased, and the pyrolysisbecomes easier after the mixture.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期733-738,744,共7页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(51306078) 中国博士后科学基金面上资助项目(2014M560401) 高等学校博士学科点专项科研基金资助项目(20133227120020) 广东省公益研究与能力建设专项(2014A020217008) 农业部南海渔业资源开发利用重点实验室开放基金资助项目(LSF2013-04) 江苏省博士后科研资助计划项目(1402217C)
关键词 海藻生物质 混合热解 动力学分析 TG-FTIR技术 协同反应 algae biomass mixed pyrolysis kinetic analysis TG-FTIR technique concerted reaction
  • 相关文献

参考文献15

  • 1Nakorn W, Taro S, Wiwut T. Pyrolysis behaviors of rice straw, rice husk, and corncob by TGMS technique[J].Journal of Analytical and Applied Pyrolysis, 2007, 78: 265-271.
  • 2Veses A, Aznar M, López J M, et al. Production of upgraded biooils by biomass catalytic pyrolysis in an auger reactor using low cost materials[J]. Fuel, 2015, 141: 17-22.
  • 3Adisak P. Biooil production via fast pyrolysis of biomass residues from cassava plants in a fluidizedbed reactor[J]. Bioresource Technology, 2011, 102: 1959-1967.
  • 4王立群,李伟振,宋旭,郭凯,王同章.生物质与煤共气化制取氢气的试验[J].江苏大学学报(自然科学版),2009,30(5):496-500. 被引量:13
  • 5Du Zhenyi, Hu Bing, Ma Xiaochen, et al. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids[J]. Bioresource Technology, 2013, 130: 777-782.
  • 6Anastasakis K, Ross A B, Jones J M. Pyrolysis behaviour of the main carbohydrates of brown macroalgae[J]. Fuel, 2011, 90: 598-607.
  • 7Demirbas M F. Biofuels from algae for sustainable development[J]. Applied Energy, 2011, 88: 3473-3480.
  • 8Maddi B, Viamajala S, Varanasi S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic Biomass[J]. Bioresource Technology, 2011, 102: 11018-11026.
  • 9Luo Supeng, Bao Guirong, Wang Hua, et al. TGDSCFTIR analysis of cyanobacteria pyrolysis[J]. Physics Procedia, 2012, 33: 657-662.
  • 10Wang Jun, Wang Guangce, Zhang Mingxu, et al. A comparative study of thermolysis characteristics of sea weed and fir wood[J]. Process Biochemistry, 2006, 41:1883-1886.

二级参考文献10

  • 1王立群,王同章.流化床气化炉的制气工艺及其在制氢中的应用[J].江苏大学学报(自然科学版),2004,25(6):532-535. 被引量:11
  • 2赵先国,常杰,吕鹏梅,王铁军,付严.生物质富氧—水蒸气气化制氢特性研究[J].太阳能学报,2006,27(7):677-681. 被引量:27
  • 3陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(12):1276-1284. 被引量:25
  • 4刘一鸣.工业制氢方法的比较与选择[J].化学与生物工程,2007,24(3):72-74. 被引量:24
  • 5王立群,宋旭,周浩生,唐恒,王同章.双组分颗粒系统流化特性的试验[J].江苏大学学报(自然科学版),2007,28(3):232-236. 被引量:8
  • 6Turn S,Kinoshita C, Zhang Z, et al. An experimental investigation of hydrogen production from biomass gasification [J]. Int J Hydrogen Energy, 1998, 23(8) : 641 - 648.
  • 7Pan Y G, Velo E, Roca X, et al. Fluidized-bed co-gasi- fication of residual biomass/poor coal blends for fuel gas production[J]. Fuel, 2000, 79( 11 ) :1317 - 1326.
  • 8Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier [J]. Ind Eng Chem Res , 2004,43(7) :1634 -1640.
  • 9Aznar M P, Caballero M A, Corella J, et al. Hydrogen production by biomass gasification with steam-02 mixtures followed by a catalytic steam reformer and a CO- shift system[J]. Energy and Fuels, 2006,20(3) :1305 - 1309.
  • 10Corella J,Toledo J M, Gregorio Molina. Biomass gasification with pure steam in fluidized bed revisited [ C ]// Proceedings of the 15th European Biomass Conference. Berlin, Germany : [ s. n. ] ,2007:7 - 11.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部