期刊文献+

基于三分类支持向量机的多分类算法的研究 被引量:9

Study on Classification Algorithm Based on Three Classification Support Vector Machine
下载PDF
导出
摘要 用支持向量机解决多分类问题是目前众多学者研究的热点话题.将已有的最小二乘支持向量分类-回归机算法推广到M空间进行了理论分析,在基于支持向量机的三分类算法基础上,提出了两个新的K(K>3)类多分类算法:一对一对多与一对一对一算法.对所有数据集进行分类时,在已有的多分类算法的基础上采用加校正的技巧:忽略准确率低的子分类器.数值实验证明了该技巧的有效性,并且校正后的准确率比校正前平均提高了4.61%. Solving multi-class classification problems by means of support vector machine is a hot topic researched by many scholars.Firstly,Least Square Support Vector Classification-Regression algorithm was analyzed in the M space.Then two new multi-classification algorithms for Kclasses:1-v-1-v-r(one versus one versus rest)and 1-v-1-v-1(one versus one versus one)were proposed based on tri-classification algorithm.When all of the data set were classified,adding correction and ignoring the low accuracy of the sub classifiers were used,which based on the existing multi-classification algorithm.The numerical experiments show that the algorithm is effective and the accuracy is improved by 4.61% after the correction.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2015年第5期520-525,532,共7页 Journal of North University of China(Natural Science Edition)
关键词 多分类问题 1-v-1-v-1算法 1-v-1-v-r算法 classification problem 1-v-1-v-1algorithm 1-v-1-v-r algorithm
  • 相关文献

参考文献15

  • 1Cortes C,Vapnik V.Support vector networks[J],Machine Learning,1995,20(3):273-297.
  • 2Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 3Hastie T,Tibshirani R.Classification by pairwise cou- pling[J].The Annals of Statistics,1998,26(2):451-471.
  • 4Dietterich T G,Bakiri G.Solving multiclass learning problems via error-correcting output codes[J].Journal of Artificial Intelligence Research,1995,2(1):263-286.
  • 5Angulo C,Parra X,Catala A.K-SVCR.A Support vector machine for multi-class[J].Neurocomputing,2003,55(1-2):57-77.
  • 6Zhong P,Fukushima M.A new multi-class support vector algorithm[J].Optimization Methods and Soft- ware,2006,21(3):359-372.
  • 7Xu Y T,Wu C.A total multi-class support vector ma- chine[J].Journal of Information Computational Sci- ence,2011,8(7):1147-1154.
  • 8翟嘉,胡毅庆,徐尔.用于多分类问题的最小二乘支持向量分类—回归机[J].计算机应用,2013,33(7):1894-1897. 被引量:2
  • 9Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Trans- actions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
  • 10Qi Z J,Tian Y J,Shi Y.Robust twin support vector machine for pattern classification[J].Pattern Recog- nition,2012,46(1):305-316.

二级参考文献13

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2CORTES C, VAPNIK V. Support vector networks [ J]. Machine Learning, 1995, 20(3) : 273 - 297.
  • 3VAPNIK V. The nature of statistical learning theory [ M]. New York: Springer, 1995.
  • 4DIErlTERICH T G, BAKIRI G. Solving multiclass learning prob- lems via error-correcting output codes [ J]. Journal of Artificial Intel- ligence Research. 1995.2( 1) : 263 -286.
  • 5HSU C W, LIN C J. A comparison of methods for multiclass support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415 -425.
  • 6ANGULO C, PARRA X, CATALA A. K-SVCR. A support vector machine for multi-class [ J]. Neurocomputing, 2003, 55(1/2) : 57 - 77.
  • 7ZHONG P, FUKUSHIMA M. A new multi-class support vector algo- rithm [ J]. Optimization Methods and Software, 2006, 21 (3) : 359 - 372.
  • 8XU Y T, WU C. A total multi-class support vector machine [ J].Journal of Information and Computational Science, 2011, 8(7): 1147 - 1154.
  • 9ANGULO C, RUIZ F J, GONZALEZ L, et al. Multi-classification by using tri-class SVM [ J]. Neural Processing Letters, 2006, 23(1) : 89 - 101.
  • 10SUYKENS J A K, VANDEWALLE J. Least square support vector machine classifiers [ J]. Neural Processing Letters, 1999, 9(3) : 293 -300.

共引文献1

同被引文献48

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部